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1. Introduction

Food quality and safety are critical issues in the 
increasing global food trade characterized by com-
plex supply chains. Although consumers increas-
ingly demand sustainable, transparent, and healthy 
food products — and despite stricter regulations and 
technological progress — food fraud remains a per-
sistent issue. It poses risks to public health, causes 
economic damage, compromises religious dietary 
requirements, and may even contribute to the endan-
germent of protected species (Li et al., 2020; Filonzi 
et al., 2023). Food fraud involves deliberate misla-
belling, species substitution, and exposure to toxins, 

pathogens and allergens (Ortea et al., 2012) threat-
ening consumer health and undermine consum-
er trust (Dawan and Ahn, 2022). Mislabelling rates 
across various food sectors including seafood, meat, 
botanicals, spices, and probiotics exceed on aver-
age by > 20% (Gorini et al., 2023) to a maximum 
of >70% for certain food categories (Stamatis et al., 
2015). The most common type of food fraud is the 
replacement of a component with a similar cheap-
er one, followed by undeclared ingredients (Stama-
tis et al., 2015).

Since the 1980s worldwide research strat-
egies have been aiming to develop and improve 
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technologies to control authenticity and safety of 
foods (Katerinopoulou et al., 2020). Amongst the 
analytical tests used for food authentication DNA-
based techniques are most effective. DNA barcod-
ing, a molecular technique that uses short, standard-
ized genetic markers to identify species (Hebert et 
al., 2003), has become a cornerstone in addressing 
these challenges (Kumar et al., 2009). Originally 
developed for taxonomic and biodiversity research, 
DNA barcoding has been adapted to food science to 
authenticate raw and processed food products, even 
when morphological characteristics are degraded 
or lost (Dawn and Ahn, 2022). The technique has 
evolved further with the integration of next-gen-
eration sequencing (NGS), enabling DNA meta-
barcoding—a high-throughput approach capable 
of detecting multiple species in complex mixtures 
(Dobrovolny et al., 2022). This has proven espe-
cially valuable in uncovering adulteration in meat 
products and composite foods. For example, a 2024 
study applying metabarcoding to EU meat samples 
revealed numerous undeclared animal and plant 
species, providing evidence of hidden substitutions 
and labelling violations (Mottola et al, 2024). How-
ever, the field is not without its limitations. A 2024 
systematic review of metabarcoding in animal-ori-
gin food authentication highlighted persistent issues 
such as inconsistent primer sets, platform-depend-
ent biases, and the need for standardized quality 
control procedures before the method can be wide-
ly adopted for regulatory use (Giusti et al., 2024). 
In the seafood industry, DNA barcoding continues 
to reveal significant mislabelling — for instance, a 
2021 Italian border-inspection study found 22.5 % 
mislabelling in imported seafood, with cephalopods 
mislabelled at 43.8 % and fish at 14.0 % — some-
times involving endangered or protected species 
(Filonzi et al., 2023; Guardone et al., 2021). The 
economic impact of food fraud remains uncertain, 
with global estimates ranging between $ 10 billion 
(Robson et al., 2020) to at least $ 65 billion (Agetu, 
2020). In 2017 alone, authorities in Europe seized 
approximately 9,800 tonnes of non-authentic food 
(Kendall et al., 2019). These findings illustrate the 
global scale of the problem and the importance of 
molecular tools in enforcing food law and protect-
ing endangered species.

This review provides a comprehensive over-
view of DNA barcoding and its technological 
advancements, with a focus on its role in ensur-
ing food authenticity and traceability “from gene 
to table” (Liu K et al, 2022). Current applications 

across food categories are reviewed, regulatory per-
spectives are addressed, and emerging trends includ-
ing portable sequencing and the integration with 
blockchain technology are examined (Singh and 
Sharma, 2023).

2. Principles and technological 
advancements in DNA barcoding 

The selection of DNA barcoding markers 
depends on the target organism. For animals, the 
cytochrome c oxidase I (COI) remains the standard. 
In plants, mitochondrial genes evolve too slow, so 
plastid genes like rbcL and matK are used instead 
(CBOL Plant Working Group, 2009). For fungi, the 
internal transcribed spacer (ITS) region offers high 
discriminatory power (Schoch et al., 2012). 

The barcoding workflow typically begins with 
sample collection from food matrices (Figure 1). 
DNA is then extracted using commercial kits or 
CTAB-based protocols designed to overcome food-
specific inhibitors like fats or tannins. Target regions 
are amplified via PCR, often using nested or multi-
plex strategies in complex mixtures (Handy et al., 
2011). Sequencing is performed through either tra-
ditional Sanger methods or whole-genome sequenc-
ing. Traditional Sanger sequencing, while reliable, is 
limited by low throughput and an inability to resolve 
multiple species in complex mixtures. These con-
straints have been overcome by the introduction of 
next-generation sequencing (NGS) technologies. This 
enables DNA metabarcoding—simultaneous identifi-
cation of multiple species within a single mixed sam-
ple—making the technique particularly valuable for 
testing multi-ingredient and processed foods like sau-
sages, herbal blends, and convenience meals. 

In cases where DNA is degraded—such as in 
canned or heavily processed foods—shorter “mini-
barcodes” (less than 200 base pairs) improve ampli-
fication success (Stahl et al., 2023). Mini-barcod-
ing achieved identification rates above 90% across a 
range of difficult food matrices (Stahl et al., 2023). 
Nevertheless, the shorter length of mini-barcodes 
may limit their ability to discriminate between close-
ly related species, and issues such as misidentified 
specimens, sample confusion, or contamination can 
further compromise accuracy. However, advances in 
reference databases and bioinformatic methods have 
improved reliability, and combining multiple loci or 
integrating mini-barcodes with full-length markers 
allows robust species identification (Galimberti et 
al., 2013; Cheng et al., 2023).
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The effectiveness of these tools depends heav-
ily on the quality of the reference databases used. 
Customized regional or institutional databases are 
increasingly being incorporated into barcoding work-
flows to complement public repositories and improve 
identification accuracy. Such tailored datasets, for 
example those developed for mammalian and poul-
try species authentication, allow laboratories to use 
relevant barcode sequences adapted to their vali-
dation needs (Dobrovolny et al., 2022). Two of the 
most common global databases are the Barcode of 
Life Data System (BOLD), which is curated specifi-
cally for barcoding and linked to voucher specimens 
(Ratnasingham and Hebert, 2007), and GenBank, 
which offers broader coverage but is less curated 
and more prone to misidentifications (Nilsson et al., 
2006). To enhance consistency and data interoper-
ability, initiatives such as the FAIR data principles 
(Findable, Accessible, Interoperable, Reusable) have 
been introduced. These guidelines aim to improve 
database standardization and facilitate the integration 
of barcoding outputs into regulatory and traceability 
systems (Wilkinson et al., 2016). Hybrid strategies—
such as cross-validating GenBank hits with BOLD 
entries or building in-house curated databases—are 
becoming increasingly common for ensuring accura-
cy in critical applications like regulatory inspections 
and certification.

Collectively, these technological advancements 
have pushed DNA barcoding from a niche labora-
tory method into a mainstream, scalable, and field-
deployable tool with broad applications in food 
integrity and safety.

3. Applications in food integrity and safety

One of the most pressing concerns in global 
food markets is species mislabelling and substitu-
tion, which remains prevalent in seafood, meat, and 
plant-based products. For instance, studies in Thai-
land have shown that over 24% of seafood products 
were mislabelled, including cases where endangered 
species like Thunnus maccoyii (Southern blue-
fin tuna) were substituted for more common vari-
eties (Senathipath et al., 2024). DNA-based meth-
ods, including metabarcoding and DNA barcoding, 
have revealed the presence of undeclared animal 
species in a substantial proportion of meat prod-
ucts, highlighting widespread mislabelling and the 
utility of these molecular tools for verifying species 
composition and ensuring food authenticity (Tantu-
an and Viljoen, 2021; Hellberg et al., 2017). In the 
plant sector, DNA markers such as rbcL, matK, and 
ITS2 have uncovered extensive adulteration in herb-
al supplements and traditional medicines (Harris et 
al., 2024; Chen et al., 2022). High-value oils, such 

Figure 1. The principles of the DNA- barcoding technique (Created in BioRender. Ruppitsch W. 
(2025) https://BioRender.com/bwtr3ev»)
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as olive oil from protected regions, can also bene-
fit from DNA-based traceability tools, which help 
authenticate geographic origin and detect adultera-
tion with lower-quality oils (Agrimonti et al., 2011). 
DNA barcoding is also instrumental in detecting 
adulterants and contaminants that pose health risks 
to consumers. Even trace amounts of undeclared 
allergens like peanuts, soy, or crustaceans can trig-
ger serious allergic reactions. DNA-based analyses 
have proven effective in identifying such allergens 
in processed foods and sauces, as well as banned 
substances like bushmeat or endangered species in 
imported products (Staats et al., 2016). Using meta-
barcoding techniques, numerous instances of unde-
clared animal DNA have been detected in products 
labelled as vegan or allergen-free, which can lead 
to product recalls and stricter regulatory oversight 
(Giusti et al., 2023; BeVeg, 2023). The method also 
enables detection of toxic plant species that may be 
accidentally or fraudulently incorporated into teas, 
supplements, or traditional remedies—situations 
where visual inspection would be inadequate (Such-
er and Carles, 2008). 

Beyond authenticity and allergen control, DNA 
barcoding plays a growing role in verifying compli-
ance with religious and ethical food certifications. 
Halal certification, for example, requires the exclu-
sion of any porcine material; barcoding is routine-
ly employed to test for pork DNA in meat, gela-
tine, and additives (Shabani et al., 2015). Kosher 
regulations similarly restrict specific ingredients 
and combinations, and DNA-based tests can detect 
the presence of shellfish or non-kosher fish in pro-
cessed foods (Andronache et al., 2025). Even vegan-
labelled products are increasingly scrutinized using 

metabarcoding to ensure they are free of trace ani-
mal DNA, especially in shared production facilities 
(Srivathsan et al., 2021). 

DNA barcoding is expanding into the realm 
of microbial food safety (Sabater et al.,2021). 
Although originally developed for multicellular 
organisms, adaptations using 16S rRNA and ITS 
rRNA sequencing now allow for the identification 
of bacterial, fungal, and parasitic contaminants. This 
approach has been applied to detect key pathogens 
such as Salmonella, Listeria, and E. coli in meat and 
dairy products, as well as toxigenic fungi like Asper-
gillus spp. and Fusarium spp. in cereals and spices 
(Muñoz-Martinez et al., 2025; Gonzalez-Escalona et 
al., 2017), and protozoan contaminants like Crypto-
sporidium spp. and Giardia spp. in water and fresh 
produce. DNA metabarcoding has been applied in 
Sardinian sheep cheese processing environments, 
identifying bacterial strains that could contribute to 
product contamination and spoilage, highlighting 
the utility of metabarcoding for monitoring microbi-
al risks in cheese production (Giagnoni et al., 2025). 
Applications of DNA barcoding in food integrity 
and safety are shown in Table 1.

4. Regulatory and industrial perspective

Food fraud within the European Union is reg-
ulated under Regulation (EC) No. 178/2002 of the 
European Parliament. Despite significant efforts 
toward its prevention, access to reliable and public-
ly available information remains limited (Brooks et 
al., 2021). European mechanisms such as the Rap-
id Alert System for Food and Feed (RASFF), estab-
lished in 1979, and the EU Food Fraud Network, 

Table 1. Applications of DNA barcoding in food integrity and safety

Application area Description

Species mislabelling Identification of incorrectly labelled or substituted species in 
meat, fish, etc.

Detection of allergens and contaminants Detection of trace allergens (e.g., peanut, soy) and harmful 
substances.

Religious and ethical standards Verification of the absence of prohibited ingredients in 
Halal, Kosher, and vegan products.

Microbial contamination Identification of bacteria, fungi, and parasites relevant to 
food safety.

Authentication of plant-based products Analysis of teas, supplements, and herbal blends for 
undeclared or toxic species.

Verification of declared composition Detection of undeclared or illegal ingredients in complex 
processed foods.
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launched in 2013, have improved data sharing and 
cross-border collaboration in addressing food fraud 
(Brooks et al., 2021). However, the complexity of 
international supply chains, combined with the high-
ly complex nature of many food products, increases 
the probability that fraud remains undetected (Man-
ning & Monaghan, 2019). 

One contributing factor is that the Hazard Anal-
ysis and Critical Control Points (HACCP) system, 
while effective for food safety, was not designed 
for the detection of fraudulent practices (Kowalska, 
2018). To address this gap, complementary frame-
works such as Threat Analysis and Critical Con-
trol Points (TACCP) and Vulnerability Assessment 
and Critical Control Points (VACCP) are increasing-
ly being adopted (Brooks et al., 2021). The effec-
tiveness of these systems, however, depends heavily 
on the application of advanced analytical techniques 
capable of verifying food authenticity and prevent-
ing adulterated products from entering the supply 
chain (Manning & Soon, 2016; Fox et al., 2018).

Building on this foundation, DNA-based tech-
niques such as DNA barcoding and metabarcod-
ing are increasingly regarded as valuable tools to 
strengthen global food authenticity and traceabil-
ity systems. In the EU, the European Food Safety 
Authority (EFSA) has acknowledged their scientif-
ic potential, particularly regarding identity verifica-
tion of novel foods including plants, animals, fun-
gi, and algae, but has not yet formally endorsed their 
widespread use (Veveris, 2024). Metabarcoding, 
for instance, shows particular promise in detecting 
undeclared species or complex plant compositions, 
though its regulatory application remains under 
development by EFSA and EU Member States (Mot-
tola et al., 2024; Giusti et al, 2024).

In the United States, the Food and Drug Admin-
sitration (FDA) has integrated DNA-based methods 
into its seafood inspections and guidance materials 
to support regulatory compliance and ensure sea-
food authenticity (Handy et al., 2011). These meth-
ods use standardized DNA sequences, such as those 
in the Regulatory Fish Encyclopedia, to detect mis-
labelled or substituted species throughout the supply 
chain, enhancing traceability, preventing fraud, and 
supporting consumer protection (Haile et al., 2008). 
DNA barcoding represents a valuable tool that helps 
the FDA ensure the safety and integrity of the U.S. 
food supply (Jones et al., 2013).

Countries like Canada, Australia, and China also 
apply DNA barcoding in customs, Halal/Kosher certi-
fication, and herbal verification (Fathima et al., 2024; 

Aghayeva et al., 2021). Seafood processors use DNA 
barcoding to confirm species at each supply chain 
step, helping detect mislabelling and thus improve 
traceability (Pardo et al., 2020). The technology is 
also being embedded in blockchain platforms for 
meat and herbal supplements, linking product records 
to genetic proof (Gorini et al., 2023). 

Globally, the Codex Alimentarius Commis-
sion has begun incorporating molecular tools into 
its food authenticity standards, encouraging harmo-
nization. While Codex recognizes the importance 
of DNA-based methods for detection and identi-
fication of species and specific proteins in foods, 
their use is not yet mandatory, and implementation 
depends on national authorities (Codex, 2011). So 
far, FDA and the Joint Research Centre (JRC) of the 
European Commission have released detailed pro-
tocols, and Codex is evaluating molecular methods 
for inclusion in international guidelines, however 
standardized and validated protocols are still needed 
to ensure harmonized application across countries 
(JRC, 2024; Codex, 2023).

5. Challenges and limitations

Despite its advantages, DNA barcoding faces 
several limitations that hinder its universal applica-
tion in food authenticity and safety. A major techni-
cal barrier is DNA degradation in processed foods. 
Thermal, chemical, or mechanical treatments often 
fragment DNA, making standard barcode regions 
like COI, rbcL or ITS difficult to amplify (Meus-
nier et al., 2008). Mini-barcodes (<200 bp) have 
been developed to overcome this, though they may 
lack full taxonomic resolution (Shokralla et al., 
2015). Another critical issue is the incompleteness 
and inconsistency of reference databases (Kartzinel 
et al., 2025). Many food-relevant species are under-
represented, especially among plants, fungi, and 
minor seafood taxa. Misannotations in public data-
bases such as GenBank can result in misidentifica-
tions, prompting researchers to cross-reference with 
BOLD or use curated in-house databases (Ratnasin-
gham and Hebert, 2007).

A lack of global harmonization means results 
accepted in one region may not be valid in anoth-
er (Geary et al., 2019). Data sovereignty is also a 
concern, particularly where genetic resources from 
indigenous regions are used without consent, rais-
ing compliance issues with the Nagoya Protocol 
(Prathapan and Rajan, 2020). Misidentification due 
to contaminated or incomplete data can lead to costly 
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recalls and reputational harm. Costs and infrastruc-
ture constraints remain a major hurdle in low- and 
middle-income countries. Although technologies 
have improved accessibility, expenses for reagents, 
limited lab capacity, and lack of trained staff are per-
sistent challenges (Yuan et al., 2025). Additional-
ly, global databases are biased toward species from 
developed regions, limiting their relevance for foods 
originating from Africa, Asia, and Latin America. 
Greater investment in local databases, training, and 
technology transfer is essential for equitable global 
adoption (Yuan et al.,2025).

6. Future perspectives

DNA barcoding is evolving beyond species 
identification into a central tool for transparency, 
adaptability, and sustainability. Its convergence with 
blockchain, artificial intelligence (AI), and ecosys-
tem monitoring opens new opportunities for tracea-
bility and risk management. Blockchain integration 
offers secure, tamper-proof traceability by link-

ing DNA-verified species data to immutable digital 
records. Pilot projects in high-value sectors like sea-
food and organic meat have already connected QR 
codes on packaging to DNA-based authenticity logs 
(Gröppel-Klein et al., 2023; FAO, 2022). This mod-
el could become standard for certified products like 
Halal or sustainably sourced goods. AI and machine 
learning are transforming how barcoding data is pro-
cessed. These tools automate species classification, 
detect anomalies, and integrate genetic, geograph-
ic, and trade data to predict fraud and supply chain 
vulnerabilities (Lokan et al., 2024). Barcoding also 
supports climate-resilient food systems by enabling 
rapid identification of shifting species and empow-
ering small producers to validate products for com-
petitive markets and it contributes to reduce food 
waste through improved sorting, labelling, and qual-
ity control (Gorini et al., 2023). In this broader role, 
DNA barcoding is poised to become essential infra-
structure for building ethical, transparent, and sus-
tainable food systems worldwide.
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