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1. Introduction

Foodborne zoonotic bacteria pose a growing 
global public health concern, causing an estimat-
ed 600 million illnesses and 420,000 deaths annual-
ly (WHO, 2015). Among the most significant bacte-
rial pathogens are Campylobacter spp., Salmonella, 
Shiga toxin-producing Escherichia coli (STEC), 

Listeria monocytogenes, and methicillin-resist-
ant Staphylococcus aureus (MRSA). These bacte-
ria not only trigger acute infections but increasingly 
contribute to the spread of antimicrobial resistance 
(AMR), complicating treatment and disease control 
efforts (Vesković, 2025).

AMR is recognised as one of the most press-
ing global threats to human and animal health. Key 
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drivers include the intensive use of antibiotics in 
animal production, inappropriate therapeutic and 
prophylactic use, and weak regulatory oversight 
(Nastasijevic et al., 2023; Milijašević et al., 2024). 
The food chain acts as a major reservoir of resistant 
bacteria due to antibiotic use in food-producing ani-
mals, while global food trade accelerates the trans-
boundary spread of resistance (Founou et al., 2016). 
Additional factors such as inadequate hygiene prac-
tices, low biosecurity standards, and direct or indi-
rect contact with contaminated food or animals con-
tribute to human exposure (Mc Nulty et al., 2016; 
Vesković, 2025). Resistance emerges through selec-
tion of naturally resistant strains, genetic mutations, 
and horizontal gene transfer, and may also be driven 
by antimicrobial residues in animal-derived foods 
(Serwecińska, 2020; Muteeb et al., 2023). The con-
fined conditions of intensive farming foster rapid 
spread of resistance genes within and between bac-
terial populations (Manyi-Loh et al., 2018).

The burden of AMR is staggering. In 2019, an 
estimated 4.95 million deaths were associated with 
AMR globally, with 1.27 million directly attributa-
ble to resistant infections (Antimicrobial Resistance 
Collaborators, 2022). In the European Union (EU), 
AMR is responsible for more than 35,000 deaths and 
economic losses exceeding €11.7 billion each year 
(ECDC, 2024). Similar estimates apply to the Unit-
ed States (US), with over 2.8 million infections and 
35,000 deaths annually linked to resistant bacteria, 
and healthcare costs exceeding US$4.6 billion (CDC, 
2019). Without effective mitigation, AMR could 
cause more than 10 million deaths annually by 2050, 
surpassing cancer, and lead to a cumulative economic 
loss of US$100 trillion (O’Neill, 2016; OECD/WHO, 
2022). In response, international organisations such 
as the World Health Organization (WHO), the Food 
and Agriculture Organization of the United Nations 
(FAO), the World Organisation for Animal Health 
(WOAH), and the United Nations Environment Pro-
gramme (UNEP) advocate for a One Health approach 
that integrates human, animal, and environmental 
health. Core strategies include prudent antimicrobial 
use, improved animal husbandry, biosecurity, vacci-
nation, and hygiene protocols (WHO, 2017).

This paper provides an overview of the major 
foodborne zoonotic pathogens—Campylobacter 
spp., Salmonella spp., STEC, L. monocytogenes, 
and MRSA—with emphasis on their prevalence, 
AMR patterns, and impact on public health. The aim 
is to contribute to understanding their role in AMR 
transmission through the food chain and support the 

development of effective prevention and control 
strategies.

2. Literature search strategy

This review is based on peer-reviewed scientif-
ic literature and official reports addressing AMR in 
major foodborne zoonotic bacteria. Relevant publica-
tions were identified through a comprehensive search 
of electronic databases including PubMed, Scop-
us, Web of Science, and Google Scholar. In addition, 
documents and surveillance data from international 
organisations, such as the WHO, FAO, ECDC, and 
OECD were reviewed. The literature search focused 
on publications published between 2015 and 2025, 
using a combination of keywords such as “antimi-
crobial resistance”, “foodborne bacteria”, “zoon-
oses”, “One Health”, and specific bacterial names 
(e.g., Campylobacter, Salmonella, STEC, L. mono-
cytogenes, MRSA). Sources were selected based on 
their scientific relevance, methodological quality, and 
alignment with the thematic scope of this review. 

3. Overview of major foodborne bacteria and 
their role in AMR transmission

Foodborne zoonotic bacteria play a critical role 
in the transmission of AMR along the food chain. 
Their ability to persist throughout various stages 
of food production, processing, and distribution, as 
well as to colonise and cause infections in humans, 
makes them particularly relevant within the One 
Health framework. This section provides an over-
view of their prevalence, resistance patterns, and 
public health impact.

3.1. Campylobacter spp.

Campylobacter are leading bacterial causes 
of foodborne diarrhoea, responsible for an estimat-
ed 400–500 million cases of gastroenteritis annually 
(Igwaran and Okoh, 2019). In the US, approximate-
ly 1.5 million infections are reported each year, with 
an associated economic burden ranging from US$1.3 
to 6.8 billion (Kaakoush et al., 2015), while annual 
costs in the EU are estimated at €2.4 billion (EFSA, 
2024). Although most cases are mild and self-limit-
ing, severe or systemic infections require antibiotic 
therapy, primarily macrolides and fluoroquinolones, 
with tetracyclines and aminoglycosides, such as gen-
tamicin, occasionally used for invasive forms (Shen et 
al., 2018). In the US, 29% of Campylobacter isolates 
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exhibit reduced susceptibility to these classes (CDC, 
2019). Multidrug-resistant (MDR) strains are increas-
ingly prevalent in low- and middle-income countries, 
where unregulated antibiotic use in animal production 
facilitates resistance spread through the food chain 
(Igwaran and Okoh, 2019; Gahamanyi et al., 2025). 
Ciprofloxacin resistance is particularly high in both 
humans and food-producing animals across the EU 
(EFSA/ECDC, 2025). In addition to gyrA point muta-
tions, several MDR genes, erm(B), arsP, fosXCC, and 
cfr(C), have been identified (Tang et al., 2017; Shen 
et al., 2018). Horizontal gene transfer further compli-
cates resistance monitoring and control (Guernier-
Cambert et al., 2021).

3.2 Salmonella

Salmonella causes approximately 1.35 million 
infections annually in the US, leading to 26,500 hos-
pitalisations and around 420 deaths (CDC, 2023). 
Of these, an estimated 212,500 cases are linked to 
antimicrobial-resistant strains, resulting in approxi-
mately 70 deaths and US$400 million in treatment 
costs each year (CDC, 2019; 2023). Similarly, in the 
EU, 65,208 human salmonellosis cases were con-
firmed in 2022, with rising levels of AMR observed 
in isolates from humans, animals, and food, particu-
larly against fluoroquinolones and third-generation 
cephalosporins (EFSA/ECDC, 2025), which compli-
cates effective treatment. Commonly used antibiot-
ic classes for treating Salmonella infections include 
β-lactams, fluoroquinolones, tetracyclines, ami-
noglycosides, and trimethoprim-sulfamethoxazole 
(Akinyemi and Ajoseh, 2017; San Millan, 2018). 
Resistance mechanisms in Salmonella involve alter-
ations in antibiotic targets, overexpression of efflux 
pumps, and the acquisition of resistance genes, such 
as blaCTX-M, qnr, and aac(6’)-Ib-cr, which are also 
prevalent among other Enterobacteriaceae (WHO, 
2023; Zhou et al., 2023; Monte et al., 2023). These 
resistance factors reduce therapeutic efficacy. The 
ability of Salmonella spp. to persist throughout the 
farm-to-fork continuum, along with its pronounced 
genetic adaptability, underscores its role as a critical 
vector in the spread of AMR under the One Health 
framework. 

3.3. Shiga toxin-producing Escherichia coli 
(STEC)

STEC is a major foodborne pathogen respon-
sible for severe gastrointestinal illness, including 

haemorrhagic colitis and haemolytic uremic syn-
drome (HUS), particularly in children and the elder-
ly. In 2022, 7,117 STEC cases were confirmed in the 
EU/EEA, with the highest rates in Ireland and Swe-
den (EFSA/ECDC, 2023). In the US, STEC causes an 
estimated 265,000 infections annually, leading to over 
3,600 hospitalisations and 30 deaths (CDC, 2022). 
The most virulent serotype, E. coli O157:H7, is com-
monly linked to contaminated ground beef, raw milk, 
and fresh produce (Stager et al., 2023; Loor-Giler et 
al., 2025). Due to the risk of HUS, antibiotic treat-
ment is generally avoided; however, AMR in STEC 
strains remains a significant public health concern. 
Resistance, particularly to ampicillin, tetracyclines, 
and trimethoprim‑sulfamethoxazole, has been report-
ed in both O157:H7 and non‑O157 serogroups (Pan 
et al., 2021; EFSA/ECDC, 2025). Resistance genes, 
such as blaTEM, blaCTX-M, tet(A/B), sul1/2, and dfrA1, 
are often plasmid- or integron-associated (Zhou et al. 
2021; Chaudhary et al., 2023). MDR STEC strains 
have been detected in livestock, food, and the envi-
ronment, with prevalence rates of 30–50%, particu-
larly in areas with poor antibiotic regulation (Nada et 
al., 2023). While antimicrobial therapy is not stand-
ard for uncomplicated cases, MDR emergence poses 
risks in severe infections requiring treatment and con-
tributes to the broader reservoir of resistance genes 
within the One Health interface. 

3.4. Listeria monocytogenes

L. monocytogenes is a major zoonotic foodborne 
pathogen and the causative agent of listeriosis—a 
severe infection with high fatality rates among vul-
nerable populations. Though less common than oth-
er foodborne pathogens, it is associated with the high-
est hospitalisation and case-fatality rates in the EU. 
In 2022, 2,993 confirmed cases were reported across 
EU/EEA countries, with a case-fatality rate of 18.1% 
(EFSA/ECDC, 2023). In the US, approximately 1,600 
cases and 260 deaths are recorded annually (CDC, 
2024). While L. monocytogenes remains generally 
susceptible to first-line antibiotics like ampicillin and 
gentamicin, the emergence of resistant strains from 
food, clinical, and environmental sources is increas-
ingly reported (Moura et al., 2023; Rippa et al., 2024; 
Sołtysiuk et al., 2025). Key resistance mechanisms 
include plasmid- and transposon-mediated gene 
acquisition, biofilm and persister cell formation, and 
efflux pump activity (Bashiry et al., 2020; Nikolaou 
et al., 2025). These are often driven by antimicrobi-
al use in both human and animal sectors (FAO/VMD, 
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2022). MDR strains have been detected in seafood, 
ready-to-eat meats, and dairy, complicating treatment 
and posing food safety risks (Menon et al., 2021; 
Nikolaou et al., 2025). L. monocytogenes can persist 
in food-processing environments and survive refrig-
eration, underscoring the need for stringent hygiene 
and AMR surveillance. Regional differences in resist-
ance patterns, shaped by antibiotic use and regula-
tory practices, necessitate targeted monitoring strat-
egies (Sołtysiuk et al., 2025). In the EU, Regulation 
(EC) No 2073/2005, as amended by Regulation (EU) 
2024/2895 (applicable from July 2026), introduces 
a zero-tolerance requirement for L. monocytogenes 
in RTE foods supporting pathogen growth, aligning 
EU policy more closely with the US zero-tolerance 
approach. 

3.5. Methicillin-resistant Staphylococcus aureus 
(MRSA)

MRSA plays a significant role in the trans-
mission of AMR through the food chain. The emer-
gence of livestock-associated MRSA (LA-MRSA) 
has further complicated AMR surveillance, especial-
ly in countries with intensive animal production sys-
tems (EFSA/ECDC, 2025). MRSA has been frequent-
ly detected in raw meat, milk, and dairy products, 
with contamination typically originating either from 
colonised animals or from infected food handlers 
(González-Machado et al., 2024). Transmission can 
also occur via direct contact with infected animals or 
humans, as well as through contaminated food prep-
aration surfaces (EFSA/ECDC, 2025). In the US, 
MRSA is responsible for over 323,700 infections and 
approximately 10,600 deaths annually, with associat-
ed healthcare costs exceeding US$1.7 billion (CDC, 
2019; Nelson et al., 2022). In contrast, the EU record-
ed a decline in MRSA bloodstream infections, with an 
estimated 4.64 cases per 100,000 population in 2023, 
a 17.6% decrease compared to 2019 (ECDC, 2024). 
While recent EU cost estimates are limited, mod-
elling studies suggest that MRSA infections affect 
around 150 000 patients yearly and impose an added 
burden of approximately €380 million on healthcare 
systems (Rocha et al., 2020). Beyond the significant 
morbidity risk, particularly for immunocompromised 

individuals, MRSA infections are very challeng-
ing and expensive to treat due to resistance to mul-
tiple antibiotic classes, including β-lactams, fluoro-
quinolones, and macrolides (Lade et al., 2022; Abebe 
and Birhanu, 2023). Resistance is primarily mediated 
by the mecA gene, which encodes an altered penicil-
lin-binding protein (PBP2a), conferring resistance to 
methicillin and other β-lactams. MRSA strains often 
carry additional resistance determinants, such as erm 
genes (macrolide resistance) and norA-associated 
efflux pumps (Abebe and Birhanu, 2023).

4. Mitigation of the AMR problem

The rising threat of AMR among major food-
borne zoonotic bacteria underscores the need for 
an integrated and coordinated response. A sustain-
able solution to AMR requires the adoption of the 
One Health approach, which recognises the inter-
connection between human, animal, and environ-
mental health. To address this complex challenge, 
the following elements are essential: a) rational 
use of antimicrobials in both human medicine and 
food-producing animals, supported by clear regu-
latory frameworks and stewardship programs; b) 
strengthening surveillance systems through har-
monised monitoring protocols across sectors and 
countries, enabling early detection and timely 
intervention; c) investment in research focused on 
alternatives to antibiotics—such as vaccines, pro-
biotics, phage therapy, and improved farming and 
hygiene practices; d) raising awareness and educa-
tion of all stakeholders, including healthcare provid-
ers, veterinarians, farmers, policymakers, and con-
sumers; e) implementation of national and regional 
action plans aligned with the Global Action Plan on 
AMR and adapted to local epidemiological reali-
ties; f) sustainable financing mechanisms, especial-
ly in resource-limited settings, to ensure continuity 
of AMR mitigation efforts; g) enhanced internation-
al collaboration and policy coherence across the 
human-animal-environment interface.

Only through a comprehensive and cross-dis-
ciplinary effort can we preserve the efficacy of life-
saving antimicrobials and ensure a safer future for 
generations to come.
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