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ABSTRACT

Foodborne zoonotic bacteria present a major public health concern worldwide, responsible
for hundreds of millions of infections and hundreds of thousands of deaths annually. These
organisms not only cause severe illness but are increasingly exhibiting resistance to critically
important antimicrobials, limiting treatment options and complicating outbreak control. The
rise of antimicrobial-resistant (AMR) strains, particularly in low- and middle-income coun-
tries, is closely linked to the misuse of antibiotics in both human medicine and food-produc-
ing animals. Resistance arises through multiple mechanisms, including enzymatic drug in-
activation, target site modification, reduced membrane permeability, efflux pump activation,
and the horizontal transfer of resistance genes via mobile genetic elements.

This paper presents an overview of the global burden of foodborne zoonoses, highlighting
the prevalence and AMR patterns of major zoonotic bacterial pathogens (Campylobacter
spp., Salmonella, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and me-
thicillin-resistant Staphylococcus aureus) across different regions. It also addresses the sub-
stantial economic costs associated with these infections. Drawing on recent data from WHO,
EFSA, ECDC, CDC, and OECD, the paper underscores the urgent need for coordinated,
cross-sectoral strategies. Emphasis is placed on the One Health approach as a comprehensive
framework to address the interconnected risks to human, animal, and environmental health.
Strengthening surveillance, promoting responsible antimicrobial use, and improving food
safety systems are essential to mitigate the growing threat of AMR along the food chain.

1. Introduction

Foodborne zoonotic bacteria pose a growing

Listeria monocytogenes, and methicillin-resist-
ant Staphylococcus aureus (MRSA). These bacte-
ria not only trigger acute infections but increasingly

global public health concern, causing an estimat-
ed 600 million illnesses and 420,000 deaths annual-
ly (WHO, 2015). Among the most significant bacte-
rial pathogens are Campylobacter spp., Salmonella,
Shiga toxin-producing Escherichia coli (STEC),

contribute to the spread of antimicrobial resistance
(AMR), complicating treatment and disease control
efforts (Veskovic, 2025).

AMR is recognised as one of the most press-
ing global threats to human and animal health. Key
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drivers include the intensive use of antibiotics in
animal production, inappropriate therapeutic and
prophylactic use, and weak regulatory oversight
(Nastasijevic et al., 2023; Milijasevi¢ et al., 2024).
The food chain acts as a major reservoir of resistant
bacteria due to antibiotic use in food-producing ani-
mals, while global food trade accelerates the trans-
boundary spread of resistance (Founou et al., 2016).
Additional factors such as inadequate hygiene prac-
tices, low biosecurity standards, and direct or indi-
rect contact with contaminated food or animals con-
tribute to human exposure (Mc Nulty et al., 2016;
Veskovic, 2025). Resistance emerges through selec-
tion of naturally resistant strains, genetic mutations,
and horizontal gene transfer, and may also be driven
by antimicrobial residues in animal-derived foods
(Serwecinska, 2020; Muteeb et al., 2023). The con-
fined conditions of intensive farming foster rapid
spread of resistance genes within and between bac-
terial populations (Manyi-Loh et al., 2018).

The burden of AMR is staggering. In 2019, an
estimated 4.95 million deaths were associated with
AMR globally, with 1.27 million directly attributa-
ble to resistant infections (Antimicrobial Resistance
Collaborators, 2022). In the European Union (EU),
AMR is responsible for more than 35,000 deaths and
economic losses exceeding €11.7 billion each year
(ECDC, 2024). Similar estimates apply to the Unit-
ed States (US), with over 2.8 million infections and
35,000 deaths annually linked to resistant bacteria,
and healthcare costs exceeding US$4.6 billion (CDC,
2019). Without effective mitigation, AMR could
cause more than 10 million deaths annually by 2050,
surpassing cancer, and lead to a cumulative economic
loss of US$100 trillion (O 'Neill, 2016; OECD/WHO,
2022). In response, international organisations such
as the World Health Organization (WHO), the Food
and Agriculture Organization of the United Nations
(FAO), the World Organisation for Animal Health
(WOAH), and the United Nations Environment Pro-
gramme (UNEP) advocate for a One Health approach
that integrates human, animal, and environmental
health. Core strategies include prudent antimicrobial
use, improved animal husbandry, biosecurity, vacci-
nation, and hygiene protocols (WHO, 2017).

This paper provides an overview of the major
foodborne zoonotic pathogens—Campylobacter
spp., Salmonella spp., STEC, L. monocytogenes,
and MRSA—with emphasis on their prevalence,
AMR patterns, and impact on public health. The aim
is to contribute to understanding their role in AMR
transmission through the food chain and support the

development of effective prevention and control
strategies.

2. Literature search strategy

This review is based on peer-reviewed scientif-
ic literature and official reports addressing AMR in
major foodborne zoonotic bacteria. Relevant publica-
tions were identified through a comprehensive search
of electronic databases including PubMed, Scop-
us, Web of Science, and Google Scholar. In addition,
documents and surveillance data from international
organisations, such as the WHO, FAO, ECDC, and
OECD were reviewed. The literature search focused
on publications published between 2015 and 2025,
using a combination of keywords such as “antimi-
crobial resistance”, “foodborne bacteria”, “zoon-
oses”, “One Health”, and specific bacterial names
(e.g., Campylobacter, Salmonella, STEC, L. mono-
cytogenes, MRSA). Sources were selected based on
their scientific relevance, methodological quality, and
alignment with the thematic scope of this review.

3. Overview of major foodborne bacteria and
their role in AMR transmission

Foodborne zoonotic bacteria play a critical role
in the transmission of AMR along the food chain.
Their ability to persist throughout various stages
of food production, processing, and distribution, as
well as to colonise and cause infections in humans,
makes them particularly relevant within the One
Health framework. This section provides an over-
view of their prevalence, resistance patterns, and
public health impact.

3.1. Campylobacter spp.

Campylobacter are leading bacterial causes
of foodborne diarrhoea, responsible for an estimat-
ed 400-500 million cases of gastroenteritis annually
(Igwaran and Okoh, 2019). In the US, approximate-
ly 1.5 million infections are reported each year, with
an associated economic burden ranging from US$1.3
to 6.8 billion (Kaakoush et al., 2015), while annual
costs in the EU are estimated at €2.4 billion (EFSA,
2024). Although most cases are mild and self-limit-
ing, severe or systemic infections require antibiotic
therapy, primarily macrolides and fluoroquinolones,
with tetracyclines and aminoglycosides, such as gen-
tamicin, occasionally used for invasive forms (Shen et
al., 2018). In the US, 29% of Campylobacter isolates
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exhibit reduced susceptibility to these classes (CDC,
2019). Multidrug-resistant (MDR) strains are increas-
ingly prevalent in low- and middle-income countries,
where unregulated antibiotic use in animal production
facilitates resistance spread through the food chain
(Igwaran and Okoh, 2019; Gahamanyi et al., 2025).
Ciprofloxacin resistance is particularly high in both
humans and food-producing animals across the EU
(EFSA/ECDC, 2025). In addition to gyr4 point muta-
tions, several MDR genes, erm(B), arsP, fosXCC, and
cfr(C), have been identified (Tang et al., 2017; Shen
et al., 2018). Horizontal gene transfer further compli-
cates resistance monitoring and control (Guernier-
Cambert et al., 2021).

3.2 Salmonella

Salmonella causes approximately 1.35 million
infections annually in the US, leading to 26,500 hos-
pitalisations and around 420 deaths (CDC, 2023).
Of these, an estimated 212,500 cases are linked to
antimicrobial-resistant strains, resulting in approxi-
mately 70 deaths and US$400 million in treatment
costs each year (CDC, 2019; 2023). Similarly, in the
EU, 65,208 human salmonellosis cases were con-
firmed in 2022, with rising levels of AMR observed
in isolates from humans, animals, and food, particu-
larly against fluoroquinolones and third-generation
cephalosporins (EFSA/ECDC, 2025), which compli-
cates effective treatment. Commonly used antibiot-
ic classes for treating Salmonella infections include
B-lactams, fluoroquinolones, tetracyclines, ami-
noglycosides, and trimethoprim-sulfamethoxazole
(Akinyemi and Ajoseh, 2017; San Millan, 2018).
Resistance mechanisms in Salmonella involve alter-
ations in antibiotic targets, overexpression of efflux
pumps, and the acquisition of resistance genes, such
as blaCTX-M, gnr, and aac(6’)-1b-cr, which are also
prevalent among other Enterobacteriaceae (WHO,
2023; Zhou et al., 2023; Monte et al., 2023). These
resistance factors reduce therapeutic efficacy. The
ability of Salmonella spp. to persist throughout the
farm-to-fork continuum, along with its pronounced
genetic adaptability, underscores its role as a critical
vector in the spread of AMR under the One Health
framework.

3.3. Shiga toxin-producing Escherichia coli
(STEC)

STEC is a major foodborne pathogen respon-
sible for severe gastrointestinal illness, including

haemorrhagic colitis and haemolytic uremic syn-
drome (HUS), particularly in children and the elder-
ly. In 2022, 7,117 STEC cases were confirmed in the
EU/EEA, with the highest rates in Ireland and Swe-
den (EFSA/ECDC, 2023). In the US, STEC causes an
estimated 265,000 infections annually, leading to over
3,600 hospitalisations and 30 deaths (CDC, 2022).
The most virulent serotype, E. coli O157:H7, is com-
monly linked to contaminated ground beef, raw milk,
and fresh produce (Stager et al., 2023; Loor-Giler et
al., 2025). Due to the risk of HUS, antibiotic treat-
ment is generally avoided; however, AMR in STEC
strains remains a significant public health concern.
Resistance, particularly to ampicillin, tetracyclines,
and trimethoprim-sulfamethoxazole, has been report-
ed in both O157:H7 and non-O157 serogroups (Pan
et al., 2021; EFSA/ECDC, 2025). Resistance genes,
such as blargy, blacryy, tet(A/B), sul,,, and dfiA,,
are often plasmid- or integron-associated (Zhou et al.
2021; Chaudhary et al., 2023). MDR STEC strains
have been detected in livestock, food, and the envi-
ronment, with prevalence rates of 30-50%, particu-
larly in areas with poor antibiotic regulation (Nada et
al., 2023). While antimicrobial therapy is not stand-
ard for uncomplicated cases, MDR emergence poses
risks in severe infections requiring treatment and con-
tributes to the broader reservoir of resistance genes
within the One Health interface.

3.4. Listeria monocytogenes

L. monocytogenes is a major zoonotic foodborne
pathogen and the causative agent of listeriosis—a
severe infection with high fatality rates among vul-
nerable populations. Though less common than oth-
er foodborne pathogens, it is associated with the high-
est hospitalisation and case-fatality rates in the EU.
In 2022, 2,993 confirmed cases were reported across
EU/EEA countries, with a case-fatality rate of 18.1%
(EFSA/ECDC, 2023). In the US, approximately 1,600
cases and 260 deaths are recorded annually (CDC,
2024). While L. monocytogenes remains generally
susceptible to first-line antibiotics like ampicillin and
gentamicin, the emergence of resistant strains from
food, clinical, and environmental sources is increas-
ingly reported (Moura et al., 2023; Rippa et al., 2024;
Sottysiuk et al., 2025). Key resistance mechanisms
include plasmid- and transposon-mediated gene
acquisition, biofilm and persister cell formation, and
efflux pump activity (Bashiry et al., 2020; Nikolaou
et al., 2025). These are often driven by antimicrobi-
al use in both human and animal sectors (FAO/VMD,
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2022). MDR strains have been detected in seafood,
ready-to-eat meats, and dairy, complicating treatment
and posing food safety risks (Menon et al., 2021;
Nikolaou et al., 2025). L. monocytogenes can persist
in food-processing environments and survive refrig-
eration, underscoring the need for stringent hygiene
and AMR surveillance. Regional differences in resist-
ance patterns, shaped by antibiotic use and regula-
tory practices, necessitate targeted monitoring strat-
egies (Softysiuk et al., 2025). In the EU, Regulation
(EC) No 2073/2005, as amended by Regulation (EU)
2024/2895 (applicable from July 2026), introduces
a zero-tolerance requirement for L. monocytogenes
in RTE foods supporting pathogen growth, aligning
EU policy more closely with the US zero-tolerance
approach.

3.5. Methicillin-resistant Staphylococcus aureus
(MRSA)

MRSA plays a significant role in the trans-
mission of AMR through the food chain. The emer-
gence of livestock-associated MRSA (LA-MRSA)
has further complicated AMR surveillance, especial-
ly in countries with intensive animal production sys-
tems (EFSA/ECDC, 2025). MRSA has been frequent-
ly detected in raw meat, milk, and dairy products,
with contamination typically originating either from
colonised animals or from infected food handlers
(Gonzalez-Machado et al., 2024). Transmission can
also occur via direct contact with infected animals or
humans, as well as through contaminated food prep-
aration surfaces (EFSA/ECDC, 2025). In the US,
MRSA is responsible for over 323,700 infections and
approximately 10,600 deaths annually, with associat-
ed healthcare costs exceeding US$1.7 billion (CDC,
2019; Nelson et al., 2022). In contrast, the EU record-
ed a decline in MRS A bloodstream infections, with an
estimated 4.64 cases per 100,000 population in 2023,
a 17.6% decrease compared to 2019 (ECDC, 2024).
While recent EU cost estimates are limited, mod-
elling studies suggest that MRSA infections affect
around 150 000 patients yearly and impose an added
burden of approximately €380 million on healthcare
systems (Rocha et al., 2020). Beyond the significant
morbidity risk, particularly for immunocompromised

individuals, MRSA infections are very challeng-
ing and expensive to treat due to resistance to mul-
tiple antibiotic classes, including B-lactams, fluoro-
quinolones, and macrolides (Lade et al., 2022; Abebe
and Birhanu, 2023). Resistance is primarily mediated
by the mecA gene, which encodes an altered penicil-
lin-binding protein (PBP2a), conferring resistance to
methicillin and other B-lactams. MRSA strains often
carry additional resistance determinants, such as erm
genes (macrolide resistance) and norA-associated
efflux pumps (4bebe and Birhanu, 2023).

4. Mitigation of the AMR problem

The rising threat of AMR among major food-
borne zoonotic bacteria underscores the need for
an integrated and coordinated response. A sustain-
able solution to AMR requires the adoption of the
One Health approach, which recognises the inter-
connection between human, animal, and environ-
mental health. To address this complex challenge,
the following elements are essential: @) rational
use of antimicrobials in both human medicine and
food-producing animals, supported by clear regu-
latory frameworks and stewardship programs; b)
strengthening surveillance systems through har-
monised monitoring protocols across sectors and
countries, enabling early detection and timely
intervention; ¢) investment in research focused on
alternatives to antibiotics—such as vaccines, pro-
biotics, phage therapy, and improved farming and
hygiene practices; d) raising awareness and educa-
tion of all stakeholders, including healthcare provid-
ers, veterinarians, farmers, policymakers, and con-
sumers; e¢) implementation of national and regional
action plans aligned with the Global Action Plan on
AMR and adapted to local epidemiological reali-
ties; f) sustainable financing mechanisms, especial-
ly in resource-limited settings, to ensure continuity
of AMR mitigation efforts; g) enhanced internation-
al collaboration and policy coherence across the
human-animal-environment interface.

Only through a comprehensive and cross-dis-
ciplinary effort can we preserve the efficacy of life-
saving antimicrobials and ensure a safer future for
generations to come.
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