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1. Introduction

Meat is well recognized as a major source of 
high-quality proteins, providing essential amino acids 
crucial for human nutrition. Being a major source of 
high-quality proteins, meat simultaneously serves as 
a valuable reservoir of functional protein derivatives, 
particularly bioactive peptides (BPs). BPs can be 
defined as short amino acid sequences, typically few-
er than 20 residues, encrypted within parent proteins 
and released through hydrolysis, thereby exerting 
specific physiological activities with health-promot-
ing potential (Chew et al., 2019; Ozturk-Kerimoglu 

et al., 2025). Conventional methods, such as enzy-
matic hydrolysis, microbial fermentation, and chem-
ical hydrolysis, have long been employed to obtain 
BPs from food proteins. Recently, innovative phys-
ical techniques, including microwave, ultrasound, 
pulsed electric fields, and high hydrostatic pressure, 
have also gained attention for enhancing hydroly-
sis efficiency, reducing enzyme use, and improving 
peptide purity and yield (Zaky et al., 2022; Hamdi 
et al., 2025). The product obtained after hydrolysis, 
referred to as the “hydrolysate,” predominantly con-
sists of di- and tripeptides (Eckert et al., 2019; Zinina 
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et al., 2022). The process of BP production generally 
involves raw material pretreatments, hydrolysis, pro-
tein fractionation and purification, evaluation of bio-
activity, peptide identification, in silico evaluation 
for bioactivity assessment, and confirmation of activ-
ities following chemical peptide synthesis (Ozturk-
Kerimoglu et al., 2025). The purification of the pro-
teins in the resulting protein hydrolysates is carried 
out by different techniques such as ultrafiltration, 
reverse osmosis, ion-exchange column chromatog-
raphy (IEC), and reversed-phase high-performance 
liquid chromatography (RP-HPLC), while the iden-
tification of the peptide sequences is then done by 
advanced mass spectroscopy, namely liquid chroma-
tography-tandem mass spectrometry (LC-MS/MS), 
matrix-assisted laser deionization time-of-flight 
(MALDI-TOF), and electrospray ionization–mass 
spectrometry (ESI-MS) (Hamdi et al., 2025). 

BPs derived from various food sources have 
been documented to exert a broad spectrum of phys-
iological activities, such as antioxidant, antimi-
crobial, antithrombotic, antihypertensive, immu-
nomodulatory, anticancer, and lipid- or blood 
pressure-lowering effects; moreover, they influence 
not only human health but also the sensory attrib-
utes and functional characteristics of food systems 
(Chew et al., 2019; Toldrá et al., 2020; Du and Li, 
2022; Singh et al., 2022; Karami and Akbari-Ader-
gani, 2019). Beyond single-activity BPs, multi-
functional peptides that act on several physiologi-
cal pathways at once were also documented (Chai 
et al., 2020). Among these activities, meat-derived 
BPs show particular promise in antioxidant, antimi-
crobial, antihypertensive, and antidiabetic effects. 
These diverse bioactivities, along with their ability 
to improve functional and sensory properties, have 
made meat-derived BPs attractive candidates for use 
as functional ingredients in food processing. In this 
context, the present review aims to summarize the 
health-promoting and functional potentials of meat-
derived BPs and to evaluate their possible applica-
tions in various food formulations, while also dis-
cussing the current challenges and future directions 
in this emerging research field.

2. Major bioactive functions of meat-derived 
BPs

Meat and meat products are excellent sourc-
es of BPs. Numerous BPs with diverse functional 
effects have been identified in various meat parts/
further processed meat products, as well as in meat-

derived by-products. The most frequently report-
ed bioactive properties across various meat sources 
include antioxidant, antimicrobial, antihyperten-
sive, and antidiabetic activities. In particular, anti-
oxidant peptide sequences were identified in pro-
tein hydrolysates obtained from Spanish dry-cured 
ham (Li et al., 2021), fermented pork sausage 
(Kong et al., 2023), fermented chicken meat (Babu 
et al., 2025), and traditional Yunnan dry-cured beef 
(Wang et al., 2025), as well as from different meat 
by-products such as porcine liver (López-Pedrou-
so et al., 2021), porcine plasma (Zhan et al., 2022), 
chicken feet (Ozturk-Kerimoglu et al., 2023), and 
bovine bone extract (Begum et al., 2024). Potential 
antimicrobial peptides were identified in different 
meat-derived by-products such as bovine and por-
cine blood proteins (Sanchez-Reinoso et al., 2021), 
chicken feathers (Qin et al., 2022), and traditional 
ham broth (Yang et al., 2025).  Angiotensin convert-
ing enzyme (ACE) inhibitory activity, also known 
as antihypertensive activity, is another critical bio-
activity of the peptides derived from meat sourc-
es, which was formerly detected in different meat 
types/products/by-products like fish and beef skel-
etal muscles (Maky and Zendo, 2021), Indonesian 
traditional fermented beef (Cangkuk) (Mirdhayati 
et al., 2024), and beef liver hydrolysates (Gallego 
et al., 2024). Furthermore, Dipeptidyl Peptidase-IV 
(DPP-IV) inhibitory activity, in other words, anti-
diabetic activity of peptides derived from various 
sources such as dry-cured pork loins (Kęska and 
Stadnik, 2021), sheep skin (Wang et al., 2021), beef 
liver (Gallego et al., 2024), and rabbit meat (Hu et 
al., 2024) was reported. Beyond these described 
functions, BPs obtained from meat by-products are 
also mentioned to exert further effects, including 
opioid, anti-inflammatory, anti-tyrosinase, calcium-
binding, and anti-aging activities (Ozturk-Kerimog-
lu et al., 2025). 

3. Meat-derived BPs as novel ingredients in 
food formulations

Food protein-origin BPs are regarded as val-
uable candidates for the design of functional food 
components and the advancement of nutraceutical 
products. The market for BPs from food proteins is 
experiencing remarkable growth, expanding from 
USD 48.6 billion in 2020 to a forecasted USD 95.7 
billion in 2028 (Du and Li, 2022).  Besides, thanks 
to their minimal toxicity, efficient metabolism in the 
human body, and biocompatible origin, BPs have 
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emerged as versatile compounds with broad poten-
tial not only in the food sector but also in the feed, 
medical, pharmaceutical, and cosmetic industries 
(Akbarian et al., 2022; Singh et al., 2022; Zaky et al., 
2022). Chew et al. (2019) emphasized that BPs have 
attracted growing interest as natural alternatives to 

pharmaceuticals due to their health-promoting prop-
erties. Recognized as nutraceuticals, they hold prom-
ise in preventing noncommunicable diseases (NCDs) 
and addressing nutritional deficiencies. Their role in 
preventive healthcare highlights their potential as 
key functional ingredients in future diets.

Table 1. Applications of meat-derived protein hydrolysates/BPs in different food products

Hydrolysate/BP Food 
product        Highlighted findings Reference

Bovine α- and 
β-globulin 
hydrolysates 

Bread •The addition of 4% (w/w) globulin papain hydrolysate (GPH) did 
not alter the physical quality or acceptance of bread.
• In vivo tests in spontaneously hypertensive rats showed a 
significant systolic blood pressure reduction.
• Antihypertensive activity of GPH remained stable after baking, 
supporting its potential use in functional foods.

Lafarga et al. 
(2016)

Microencapsulated 
stripped weakfish 
hydrolysate 
(Cynoscion 
guatucupa) 

Yogurt • Hydrolysate addition reduced syneresis and improved yogurt 
stability, especially in the microencapsulated form.
• Both free and encapsulated hydrolysates provided stable 
antioxidant and ACE-inhibitory activities after 7 days.
• Microencapsulation masked fishy flavor, resulting in sensorily 
acceptable functional yogurts.

Lima et al. 
(2021)

Yellow fin tuna 
(Thunnus albacares) 

Functional 
beverage

• A malted grain-based health beverage was successfully fortified 
with tuna protein hydrolysate (TPH) derived from yellowfin tuna red 
meat.
• 2.5% TPH was identified as the most sensorially acceptable 
formulation.
• The enriched beverage exhibited improved nutritional, functional, 
antioxidant, and digestibility properties, along with good storage 
stability at 28 °C.
• The potential of utilizing tuna cannery red meat by-products for 
value-added, health-promoting functional beverages was underlined.

Unnikrishnan 
et al. (2021)

Fish collagen-derived 
BPs (GPLGAAGP,  
GRDGEP,  
MTGTQGEAGR)

Yogurt • Yogurt fortified with fish collagen-derived peptides (P1, P2, P3) 
showed no adverse effects on composition or sensory quality.
• Protein content, water-holding capacity, and viscosity increased 
with peptide concentration.
• At 1 mg/mL, the strongest antioxidant, ACE inhibition, and DPP-IV 
inhibition were observed.
• Peptides P1 and P2 retained bioactivity after digestion, supporting 
their potential in functional yogurt formulations.

Ayati et al. 
(2022)

Rainbow trout roe Mutton 
meat

• Alcalase-produced hydrolysate showed a higher degree of 
hydrolysis, stronger antioxidant activity, and higher essential amino 
acid content compared to pepsin.
• Hydrolysate addition enhanced antioxidant and antimicrobial 
properties of alginate–chia seed composite coating (CC). 
• CC plus 1.5% hydrolysate significantly delayed microbial 
spoilage and lipid oxidation.
• The incorporation of hydrolysate into CC effectively extended 
meat shelf life, meeting consumer demand for clean-label products 
free from synthetic preservatives. 

Golpaigani et 
al. (2023)

Thawed drip 
hydrolysates 
from pork ham

Pork patty • Thawed drip hydrolysates reduced thawing and cooking losses and 
delayed color deterioration during freeze-thaw cycles.
• Protein denaturation and oxidation were inhibited, as evidenced by 
lower carbonyls and surface hydrophobicity, higher free sulfhydryl, 
and α-helix content.
• 1.4% hydrolysate concentration showed the strongest protective 
effect, comparable to the positive control (sorbitol + sucrose).

Han et al. 
(2025)
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BPs serve as sweetening agents, color sta-
bilizers, texturizers, anti-caking agents, emulsifi-
ers, flavor enhancers, and acidity regulators in food 
processing. In addition, BPs can enhance product 
quality by influencing water- and oil-holding capac-
ity, colloidal stability, viscosity, and foaming prop-
erties (Zaky et al., 2022). Furthermore, growing con-
sumer concerns regarding food safety have driven 
the industry to explore natural substitutes for syn-
thetic antioxidants. In this context, antioxidant pro-
teins and peptides are considered promising alterna-
tives, as they exhibit equal or even superior capacity 
to inhibit lipid oxidation (Aguilar-Toalá et al., 2022; 
Zaky et al., 2022). 

Table 1 presents applications of meat-derived 
protein hydrolysates and BPs in different food prod-
ucts, along with their highlighted findings. As seen 
in the related table, the key findings demonstrate 
that protein hydrolysates and BPs, mostly those 
derived from fish, have been successfully incorpo-
rated into diverse food systems such as meat, dairy, 
bakery products, and beverages. These components 
exhibited health-promoting bioactivities, includ-
ing antioxidant, antihypertensive, antimicrobial, and 
enzyme-inhibitory effects. Moreover, they contrib-
uted to improved oxidative stability, microbial safe-
ty, sensory acceptance, and techno-functional prop-
erties of the products. Overall, their multifunctional 
potential highlights an important role in preserving 
food quality and developing functional foods. Spe-
cifically, umami and koku-inducing peptides from 
meat origin are increasingly recognized as promis-
ing functional compounds for enhancing flavor per-

ception and sensory quality in food systems (Mora 
and Toldrá, 2025). 

Although BPs can be directly incorporated 
into formulations, one of their most notable appli-
cations is in food packaging, where they are embed-
ded as antimicrobial agents to enhance food safety 
and prolong shelf life (Alzaydi et al., 2023). Notably, 
Si et al. (2024) reported that utilization of composite 
hydrogels with antimicrobial peptides was effective 
in inhibiting  Staphylococcus aureus  and  Escher-
ichia coli, and prolonged the storage time of fro-
zen chicken breast.  Taken together, these findings 
underscore the growing importance of meat-derived 
BPs as multifunctional ingredients with significant 
contributions to food quality, safety, and functional-
ity across a broad range of applications.

4. From potential to practice: challenges in 
BP applications in food systems

Although BPs exhibit remarkable health-pro-
moting effects and can enhance the functional qual-
ity of foods, their widespread application still fac-
es substantial challenges, requiring more detailed 
investigations and advanced trials to ensure success-
ful adaptation into industry. The large-scale produc-
tion of BPs requires effective process scale-up and 
strong collaborations between research laborato-
ries and industry. For successful use in food appli-
cations, BPs must also demonstrate stability against 
gastrointestinal digestion and proteolytic degrada-
tion, along with sufficient absorption across intes-
tinal cells (Chew et al., 2019; Hamdi et al., 2025). 

Figure 1. Potential effects of meat-derived BPs on food quality
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Zaky et al. (2022) reported that despite advances in 
understanding peptide structure and function, their 
interrelationship, stability, and regulatory mecha-
nisms remain insufficiently explored. Therefore, 
further pre-clinical and clinical studies are crucial 
to determine effective doses, bioavailability, phar-
macokinetics, and the feasibility of integrating BPs 
into food systems. Due to certain limitations of BPs 
in the formulation of food and nutraceutical prod-
ucts, further investigations into their interactions 
within the food matrix, poor water solubility, hygro-
scopic behavior, and flavor-masking effects are also 
required. In this context, micro- and nano-encapsu-
lation techniques were mentioned to enhance their 
compatibility and biological activity upon con-
sumption (Aguilar-Toalá et al., 2022). Apart from 
encapsulation, the use of enzyme inhibitors such 
as protease blockers, as well as the application of 
permeation enhancers in epithelial cells, may facil-
itate the absorption of intact BPs (Alzaydi et al., 
2023). Moreover, Hamdi et al. (2025) highlight-
ed the considerable potential of BPs in the develop-
ment of functional foods and, in particular, in anti-
cancer research. Their ease of synthesis, structural 
modifiability, and low immunogenicity also make 
them attractive candidates for pharmaceutical appli-

cations. Nevertheless, their therapeutic use remains 
constrained by instability within biological systems. 
This limitation underscores the pressing need for 
comprehensive clinical studies to establish quality 
requirements before their full potential in healthcare 
and food sectors can be realized.

5. Conclusion

Meat-derived BPs are promising compounds 
with diverse physiological functions and wide appli-
cation potential in food systems. In addition to their 
bioactive properties, they can enhance shelf life as 
well as technological and sensory properties. Their 
incorporation into functional food formulations is 
supported by scientific evidence and growing con-
sumer demand for natural health-promoting ingre-
dients. Yet, challenges remain in large-scale produc-
tion, gastrointestinal stability, bioavailability, and 
regulatory approval. Advances in processing and 
encapsulation techniques will be key to overcom-
ing these barriers. Overall, meat BPs hold strong 
promise as multifunctional ingredients, with further 
research needed for their full integration into food 
products.
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