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ARTICLE INFO ABSTRACT

Meat proteins constitute a rich reservoir of encrypted bioactive peptides that may be released
during enzymatic or microbial hydrolysis, gastrointestinal digestion, and various food pro-
cesses, subsequently exerting diverse physiological functions. These peptides show anti-
oxidant, antimicrobial, antihypertensive, and antidiabetic properties, along with additional
roles such as immunomodulatory and anti-aging effects. They have demonstrated significant
potential as multifunctional ingredients, not only improving human health but also enhanc-
ing shelf life as well as techno-functional and sensory attributes of foods. Their incorporation
into diverse food systems can improve oxidative stability, microbial quality, and consumer
acceptance, while recent advances also point to innovative applications in antimicrobial
packaging. Nevertheless, the translation of these peptides from laboratory to industry faces
key challenges, including production scalability, bioavailability, and regulatory constraints.
Emerging approaches, such as the utilization of nano-encapsulation techniques and protease
inhibitors, are under exploration to overcome these limitations. This review aims to provide
an updated overview of current findings on meat-derived biopeptides, emphasizing their
bioactive properties, utilization opportunities in different food formulations, and the main
challenges that must be addressed for broader application.
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1. Introduction et al., 2025). Conventional methods, such as enzy-
matic hydrolysis, microbial fermentation, and chem-
ical hydrolysis, have long been employed to obtain
BPs from food proteins. Recently, innovative phys-
ical techniques, including microwave, ultrasound,
pulsed electric fields, and high hydrostatic pressure,

have also gained attention for enhancing hydroly-

Meat is well recognized as a major source of
high-quality proteins, providing essential amino acids
crucial for human nutrition. Being a major source of
high-quality proteins, meat simultaneously serves as
a valuable reservoir of functional protein derivatives,
particularly bioactive peptides (BPs). BPs can be

defined as short amino acid sequences, typically few-
er than 20 residues, encrypted within parent proteins
and released through hydrolysis, thereby exerting
specific physiological activities with health-promot-
ing potential (Chew et al., 2019; Ozturk-Kerimoglu

sis efficiency, reducing enzyme use, and improving
peptide purity and yield (Zaky et al., 2022; Hamdi
et al., 2025). The product obtained after hydrolysis,
referred to as the “hydrolysate,” predominantly con-
sists of di- and tripeptides (Eckert et al., 2019; Zinina
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et al., 2022). The process of BP production generally
involves raw material pretreatments, hydrolysis, pro-
tein fractionation and purification, evaluation of bio-
activity, peptide identification, in silico evaluation
for bioactivity assessment, and confirmation of activ-
ities following chemical peptide synthesis (Ozturk-
Kerimoglu et al., 2025). The purification of the pro-
teins in the resulting protein hydrolysates is carried
out by different techniques such as ultrafiltration,
reverse osmosis, ion-exchange column chromatog-
raphy (IEC), and reversed-phase high-performance
liquid chromatography (RP-HPLC), while the iden-
tification of the peptide sequences is then done by
advanced mass spectroscopy, namely liquid chroma-
tography-tandem mass spectrometry (LC-MS/MS),
matrix-assisted laser deionization time-of-flight
(MALDI-TOF), and electrospray ionization—mass
spectrometry (ESI-MS) (Hamdi et al., 2025).

BPs derived from various food sources have
been documented to exert a broad spectrum of phys-
iological activities, such as antioxidant, antimi-
crobial, antithrombotic, antihypertensive, immu-
nomodulatory, anticancer, and lipid- or blood
pressure-lowering effects; moreover, they influence
not only human health but also the sensory attrib-
utes and functional characteristics of food systems
(Chew et al., 2019; Toldra et al., 2020; Du and Li,
2022; Singh et al., 2022; Karami and Akbari-Ader-
gani, 2019). Beyond single-activity BPs, multi-
functional peptides that act on several physiologi-
cal pathways at once were also documented (Chai
et al., 2020). Among these activities, meat-derived
BPs show particular promise in antioxidant, antimi-
crobial, antihypertensive, and antidiabetic effects.
These diverse bioactivities, along with their ability
to improve functional and sensory properties, have
made meat-derived BPs attractive candidates for use
as functional ingredients in food processing. In this
context, the present review aims to summarize the
health-promoting and functional potentials of meat-
derived BPs and to evaluate their possible applica-
tions in various food formulations, while also dis-
cussing the current challenges and future directions
in this emerging research field.

2. Major bioactive functions of meat-derived
BPs

Meat and meat products are excellent sourc-
es of BPs. Numerous BPs with diverse functional
effects have been identified in various meat parts/
further processed meat products, as well as in meat-

derived by-products. The most frequently report-
ed bioactive properties across various meat sources
include antioxidant, antimicrobial, antihyperten-
sive, and antidiabetic activities. In particular, anti-
oxidant peptide sequences were identified in pro-
tein hydrolysates obtained from Spanish dry-cured
ham (Li et al., 2021), fermented pork sausage
(Kong et al., 2023), fermented chicken meat (Babu
et al., 2025), and traditional Yunnan dry-cured beef
(Wang et al., 2025), as well as from different meat
by-products such as porcine liver (Lopez-Pedrou-
so et al., 2021), porcine plasma (Zhan et al., 2022),
chicken feet (Ozturk-Kerimoglu et al., 2023), and
bovine bone extract (Begum et al., 2024). Potential
antimicrobial peptides were identified in different
meat-derived by-products such as bovine and por-
cine blood proteins (Sanchez-Reinoso et al., 2021),
chicken feathers (Qin et al., 2022), and traditional
ham broth (Yang et al., 2025). Angiotensin convert-
ing enzyme (ACE) inhibitory activity, also known
as antihypertensive activity, is another critical bio-
activity of the peptides derived from meat sourc-
es, which was formerly detected in different meat
types/products/by-products like fish and beef skel-
etal muscles (Maky and Zendo, 2021), Indonesian
traditional fermented beef (Cangkuk) (Mirdhayati
et al., 2024), and beef liver hydrolysates (Gallego
et al., 2024). Furthermore, Dipeptidyl Peptidase-IV
(DPP-1V) inhibitory activity, in other words, anti-
diabetic activity of peptides derived from various
sources such as dry-cured pork loins (Keska and
Stadnik, 2021), sheep skin (Wang et al., 2021), beef
liver (Gallego et al., 2024), and rabbit meat (Hu et
al., 2024) was reported. Beyond these described
functions, BPs obtained from meat by-products are
also mentioned to exert further effects, including
opioid, anti-inflammatory, anti-tyrosinase, calcium-
binding, and anti-aging activities (Ozturk-Kerimog-
lu et al., 2025).

3. Meat-derived BPs as novel ingredients in
food formulations

Food protein-origin BPs are regarded as val-
uable candidates for the design of functional food
components and the advancement of nutraceutical
products. The market for BPs from food proteins is
experiencing remarkable growth, expanding from
USD 48.6 billion in 2020 to a forecasted USD 95.7
billion in 2028 (Du and Li, 2022). Besides, thanks
to their minimal toxicity, efficient metabolism in the
human body, and biocompatible origin, BPs have
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emerged as versatile compounds with broad poten-
tial not only in the food sector but also in the feed,
medical, pharmaceutical, and cosmetic industries
(Akbarian et al., 2022; Singh et al., 2022; Zaky et al.,
2022). Chew et al. (2019) emphasized that BPs have
attracted growing interest as natural alternatives to

pharmaceuticals due to their health-promoting prop-
erties. Recognized as nutraceuticals, they hold prom-
ise in preventing noncommunicable diseases (NCDs)
and addressing nutritional deficiencies. Their role in
preventive healthcare highlights their potential as

key functional ingredients in future diets.

Table 1. Applications of meat-derived protein hydrolysates/BPs in different food products

Hydrolysate/BP

Food
product

Highlighted findings

Reference

Bovine o- and
B-globulin
hydrolysates

Bread

*The addition of 4% (w/w) globulin papain hydrolysate (GPH) did
not alter the physical quality or acceptance of bread.

« In vivo tests in spontaneously hypertensive rats showed a
significant systolic blood pressure reduction.

* Antihypertensive activity of GPH remained stable after baking,
supporting its potential use in functional foods.

Lafarga et al.
(2016)

Microencapsulated
stripped weakfish
hydrolysate
(Cynoscion
guatucupa)

Yogurt

* Hydrolysate addition reduced syneresis and improved yogurt
stability, especially in the microencapsulated form.

* Both free and encapsulated hydrolysates provided stable
antioxidant and ACE-inhibitory activities after 7 days.

* Microencapsulation masked fishy flavor, resulting in sensorily
acceptable functional yogurts.

Lima et al.
(2021)

Yellow fin tuna
(Thunnus albacares)

Functional
beverage

» A malted grain-based health beverage was successfully fortified
with tuna protein hydrolysate (TPH) derived from yellowfin tuna red
meat.

* 2.5% TPH was identified as the most sensorially acceptable
formulation.

* The enriched beverage exhibited improved nutritional, functional,
antioxidant, and digestibility properties, along with good storage
stability at 28 °C.

* The potential of utilizing tuna cannery red meat by-products for
value-added, health-promoting functional beverages was underlined.

Unnikrishnan
et al. (2021)

Fish collagen-derived
BPs (GPLGAAGP,
GRDGEP,
MTGTQGEAGR)

Yogurt

* Yogurt fortified with fish collagen-derived peptides (P1, P2, P3)
showed no adverse effects on composition or sensory quality.

* Protein content, water-holding capacity, and viscosity increased
with peptide concentration.

* At 1 mg/mL, the strongest antioxidant, ACE inhibition, and DPP-IV
inhibition were observed.

* Peptides P1 and P2 retained bioactivity after digestion, supporting
their potential in functional yogurt formulations.

Ayati et al.
(2022)

Rainbow trout roe

Mutton
meat

* Alcalase-produced hydrolysate showed a higher degree of
hydrolysis, stronger antioxidant activity, and higher essential amino
acid content compared to pepsin.

* Hydrolysate addition enhanced antioxidant and antimicrobial
properties of alginate—chia seed composite coating (CC).

* CC plus 1.5% hydrolysate significantly delayed microbial
spoilage and lipid oxidation.

* The incorporation of hydrolysate into CC effectively extended
meat shelf life, meeting consumer demand for clean-label products
free from synthetic preservatives.

Golpaigani et
al. (2023)

Thawed drip
hydrolysates
from pork ham

Pork patty

* Thawed drip hydrolysates reduced thawing and cooking losses and
delayed color deterioration during freeze-thaw cycles.

* Protein denaturation and oxidation were inhibited, as evidenced by
lower carbonyls and surface hydrophobicity, higher free sulthydryl,
and a-helix content.

* 1.4% hydrolysate concentration showed the strongest protective
effect, comparable to the positive control (sorbitol + sucrose).

Han et al.
(2025)
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BPs serve as sweetening agents, color sta-
bilizers, texturizers, anti-caking agents, emulsifi-
ers, flavor enhancers, and acidity regulators in food
processing. In addition, BPs can enhance product
quality by influencing water- and oil-holding capac-
ity, colloidal stability, viscosity, and foaming prop-
erties (Zaky et al., 2022). Furthermore, growing con-
sumer concerns regarding food safety have driven
the industry to explore natural substitutes for syn-
thetic antioxidants. In this context, antioxidant pro-
teins and peptides are considered promising alterna-
tives, as they exhibit equal or even superior capacity
to inhibit lipid oxidation (Aguilar-Toala et al., 2022;
Zaky et al., 2022).

Table 1 presents applications of meat-derived
protein hydrolysates and BPs in different food prod-
ucts, along with their highlighted findings. As seen
in the related table, the key findings demonstrate
that protein hydrolysates and BPs, mostly those
derived from fish, have been successfully incorpo-
rated into diverse food systems such as meat, dairy,
bakery products, and beverages. These components
exhibited health-promoting bioactivities, includ-
ing antioxidant, antihypertensive, antimicrobial, and
enzyme-inhibitory effects. Moreover, they contrib-
uted to improved oxidative stability, microbial safe-
ty, sensory acceptance, and techno-functional prop-
erties of the products. Overall, their multifunctional
potential highlights an important role in preserving
food quality and developing functional foods. Spe-
cifically, umami and koku-inducing peptides from
meat origin are increasingly recognized as promis-
ing functional compounds for enhancing flavor per-

ception and sensory quality in food systems (Mora
and Toldra, 2025).

Although BPs can be directly incorporated
into formulations, one of their most notable appli-
cations is in food packaging, where they are embed-
ded as antimicrobial agents to enhance food safety
and prolong shelf life (Alzaydi et al., 2023). Notably,
Si et al. (2024) reported that utilization of composite
hydrogels with antimicrobial peptides was effective
in inhibiting Staphylococcus aureus and Escher-
ichia coli, and prolonged the storage time of fro-
zen chicken breast. Taken together, these findings
underscore the growing importance of meat-derived
BPs as multifunctional ingredients with significant
contributions to food quality, safety, and functional-
ity across a broad range of applications.

4. From potential to practice: challenges in
BP applications in food systems

Although BPs exhibit remarkable health-pro-
moting effects and can enhance the functional qual-
ity of foods, their widespread application still fac-
es substantial challenges, requiring more detailed
investigations and advanced trials to ensure success-
ful adaptation into industry. The large-scale produc-
tion of BPs requires effective process scale-up and
strong collaborations between research laborato-
ries and industry. For successful use in food appli-
cations, BPs must also demonstrate stability against
gastrointestinal digestion and proteolytic degrada-
tion, along with sufficient absorption across intes-
tinal cells (Chew et al., 2019; Hamdi et al., 2025).

Figure 1. Potential effects of meat-derived BPs on food quality
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Zaky et al. (2022) reported that despite advances in
understanding peptide structure and function, their
interrelationship, stability, and regulatory mecha-
nisms remain insufficiently explored. Therefore,
further pre-clinical and clinical studies are crucial
to determine effective doses, bioavailability, phar-
macokinetics, and the feasibility of integrating BPs
into food systems. Due to certain limitations of BPs
in the formulation of food and nutraceutical prod-
ucts, further investigations into their interactions
within the food matrix, poor water solubility, hygro-
scopic behavior, and flavor-masking effects are also
required. In this context, micro- and nano-encapsu-
lation techniques were mentioned to enhance their
compatibility and biological activity upon con-
sumption (Aguilar-Toald et al., 2022). Apart from
encapsulation, the use of enzyme inhibitors such
as protease blockers, as well as the application of
permeation enhancers in epithelial cells, may facil-
itate the absorption of intact BPs (4lzaydi et al.,
2023). Moreover, Hamdi et al. (2025) highlight-
ed the considerable potential of BPs in the develop-
ment of functional foods and, in particular, in anti-
cancer research. Their ease of synthesis, structural
modifiability, and low immunogenicity also make
them attractive candidates for pharmaceutical appli-

cations. Nevertheless, their therapeutic use remains
constrained by instability within biological systems.
This limitation underscores the pressing need for
comprehensive clinical studies to establish quality
requirements before their full potential in healthcare
and food sectors can be realized.

5. Conclusion

Meat-derived BPs are promising compounds
with diverse physiological functions and wide appli-
cation potential in food systems. In addition to their
bioactive properties, they can enhance shelf life as
well as technological and sensory properties. Their
incorporation into functional food formulations is
supported by scientific evidence and growing con-
sumer demand for natural health-promoting ingre-
dients. Yet, challenges remain in large-scale produc-
tion, gastrointestinal stability, bioavailability, and
regulatory approval. Advances in processing and
encapsulation techniques will be key to overcom-
ing these barriers. Overall, meat BPs hold strong
promise as multifunctional ingredients, with further
research needed for their full integration into food
products.
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