

Daily consumption of sodium and nitrite from Serbian meat products: insights from principal component analysis

Milica Vidosavljević^{1*} , Tatjana Peulić¹ , Predrag Ikonić¹ , Bojana Ikonić² , Jovana Delić³ , Marija Jokanović² and Jasmina Lazarević¹

¹ University of Novi Sad, Institute for Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia

² University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia

³ University of Kragujevac, Institute for Information Technologies, Jovana Cvijica bb, 34000, Kragujevac, Serbia

ARTICLE INFO

Keywords:

Meat products
Serbian retail market
Cooked and dry fermented sausages
Sodium chloride consumption
Nitrite consumption
Principal component analysis

ABSTRACT

Sodium chloride and nitrite play important roles in the meat processing industry, significantly influencing the safety, technological, and sensory properties of meat products, with nitrite classified as a food additive and sodium chloride as a food ingredient. Besides this important technological role, excessive intake can lead to human health disorders. Thus, the content of sodium chloride and nitrite in meat products on the Serbian market were analyzed using principal component analysis. A total of 64 meat products produced by the 18 most notable meat processors were collected from the Serbian retail market. The meat products collected belonged to four different groups: dry fermented sausages, finely comminuted cooked sausages, canned meat in pieces, and liver sausages and pates. Mean sodium chloride and nitrite contents for all analyzed meat products were 1.91 g/100g (the highest was for dry fermented sausages 3.67 g/100g; the lowest was for liver sausages and pates 1.19 g/100g) and 7.66 mg/kg (the highest was for chicken hot dogs 13.79 mg/kg; the lowest was for dry fermented sausages 2.17 mg/kg), respectively. The nitrite content in all analyzed meat products was in accordance with the European and Serbian legislation. Considering daily consumption of meat products and dried meat products in Serbia, and based on the obtained results, it can be concluded that consumers in Serbia exceed the recommended average daily consumption for sodium chloride. In conclusion, all possibilities for further reduction of sodium chloride consumption should be considered, especially because Serbia is a high risk country for cardiovascular diseases.

1. Introduction

Sodium chloride (salt) and nitrite are widely used in the meat processing industry due to their significant impact on the safety, technological, and sensory properties of meat products. Sodium chloride has historically been used in meat preservation due to its

bacteriostatic effects. Moreover, it contributes to protein hydration and water-binding capacity, improves texture, and intensifies the aroma, flavor, and color of meat products (Desmond, 2006; Haddad *et al.*, 2018; Inguglia *et al.*, 2017; Matthews & Strong, 2005; Pretorius & Schönfeldt, 2018; Rede & Petrović, 1997;

***Corresponding author:** Milica Vidosavljević, milica.vidosavljevic@fins.uns.ac.rs

Paper received August 9th 2025. Paper accepted September 2nd 2025.

The paper was presented at the 63rd International Meat Industry Conference “Food for Thought: Innovations in Food and Nutrition” – Zlatibor, October 05th-08th 2025.

Published by Institute of Meat Hygiene and Technology – Belgrade, Serbia.

This is an open access article CC BY licence (<http://creativecommons.org/licenses/by/4.0>)

Ruusunen & Puolanne, 2005; Wu *et al.*, 2015). Apart from its important role in the safety and quality of meat products, in the human body, sodium and chloride are essential for nerve and muscle function, fluid balance, and regulation of blood pH and pressure (Catterall, 2000; Jentsch *et al.*, 2002).

Like salt, nitrite also influences the safety of meat products due to its ability to prevent and control the growth of pathogenic and undesirable micro-organisms, especially *Clostridium botulinum* and *Listeria monocytogenes*. Furthermore, it has the ability to prevent lipid oxidation, and it improves the sensory properties of meat products by contributing to the development of their characteristic pink color, taste, and aroma (Honikel, 2008; Parthasarathy & Bryan, 2012; Sebranek, 2009).

Despite their technological benefits, excessive intake of salt and nitrite can adversely affect human health, which is why this topic has been receiving increasing public health attention. High sodium consumption increases the risk of hypertension, cardiovascular diseases, and other conditions (Aburto *et al.*, 2013; WHO, 2010, 2016; Wu *et al.*, 2015). Nitrites can form carcinogenic nitrosamines and contribute to toxic effects, such as methemoglobinemia and increased cancer risk (Choi *et al.*, 2007; EFSA, 2010; Gilchrist *et al.*, 2010; Zhang *et al.*, 2018). These risks are particularly relevant in Serbia, where in 2024, 49.72% of deaths were due to cardiovascular diseases and 21.79% to cancer (Statistical Office of the Republic of Serbia, 2024). In response to these risks, regulatory frameworks limit nitrite content to 150 mg/kg (100 mg/kg for sterilized canned meats), with exceptions for traditional products (European Commission, 2011; Serbian Regulation, 2008). In contrast, the sodium chloride content in foods is not strictly regulated at the EU level, although international health authorities have issued recommendations for reduced intake, typically less than 5–6 g of salt (2–4 g of sodium) per day (EFSA, 2019; WHO, 2012; WHO, 2023; FSA, 2024; Desmond, 2006; Matthews & Strong, 2005). Instead, the EU Salt Reduction Framework has established non-binding, category-specific targets for sodium reduction, while some countries have introduced their own mandatory national benchmarks. For instance, Norway has defined precise targets for salt in meat products (sausages 1.6 g/100 g, pâté 1.5 g/100 g, dried sausages up to 5.0 g/100 g), whereas Bulgaria has implemented compulsory limits on salt content in processed meat products, such as up to 2 g/100 g for general meat products and up

to 3.5 g/100 g for cured sausages. (World Action on Salt, Sugar & Health, 2025; Norwegian Directorate of Health, 2016; European Commission; European Public Health Alliance, 2021).

Considering the importance of monitoring sodium chloride and nitrite intake, this study analyzed their content in 64 meat products from four categories most commonly consumed in the Serbian diet. All samples were produced by the most prominent meat processors on the national market. Principal component analysis (PCA) was applied to provide a representative overview and support potential strategies for improving public health through informed regulatory measures.

2. Materials and methods

2.1. Meat products

A total of 64 meat products, produced by the 18 preeminent meat processors (P1-P18) were collected from the Serbian retail market. The meat products belonged to four different groups, defined by the Regulation on the Quality of Minced Meat, Semi-finished Meat Products, and Meat Products (Serbian Regulation, 2023) widely consumed in Serbian diet. The first group comprised dry fermented sausages (n=10) of the product type called “čajna kobasica” (PC). The second group was finely comminuted cooked sausages (n=21), of which 11 were chicken hot dogs (PPV) and 10 pork hot dogs (PSV). The third group consisted of canned meat in pieces (n=20), of which 11 were made of chicken meat called “pileća prsa” (PP) and 9 were pork products called “pizza šunka” (PS). Finally, the fourth group was liver sausages and pâtés (n=13), and all were the liver pâté called “jetrena pašteta” (PJ). After collection, the meat products were homogenized and stored at -18°C until analysis. All determinations were conducted in triplicate.

2.2. Sodium chloride and sodium nitrite content determination

The sodium content was determined using the FINSLab-5.4-3M-037 method for the determination of Na, K, Mg, Ca, and Mn in food by atomic absorption spectrophotometry, in accordance with the Rulebook on Food Declaration, Labeling and Advertising (Serbian Regulation, 2024). Based on the determined sodium content, the sodium chloride content was calculated in accordance with the Rulebook on Food

Declaration, Labelling and Advertising (*Serbian Regulation*, 2024) and expressed as grams of sodium chloride per 100 grams of sample. Residual nitrite content was determined according to the international standard (*ISO*, 1975) and expressed as mg nitrite/kg sample (*Peulić et al.*, 2020).

2.3. Statistical analysis

PCA was carried out using Statistica 13.5.0.17 software (TIBCO, Palo Alto, United States). PCA was performed to visualize differences between meat products groups and between samples in sodium chloride and nitrite content.

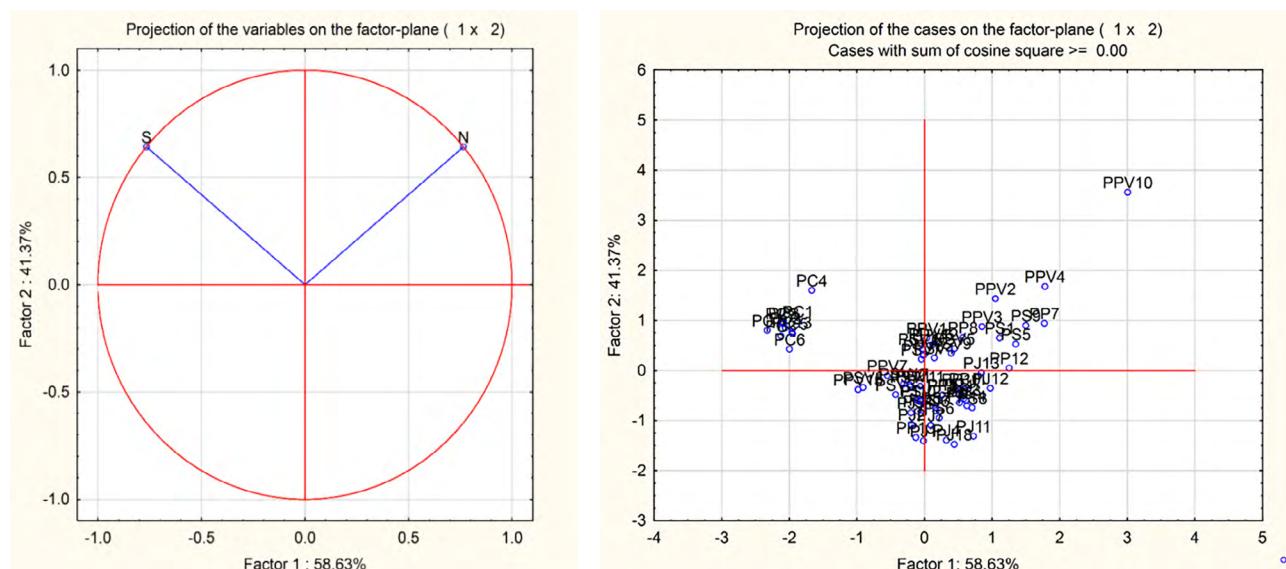
3. Results

The results of the PCA are presented in Figure 1. Figure 1a displays the PCA loading plot, which illustrates the contribution of individual variables—sodium chloride and nitrite—to the separation of the analyzed meat products. As evident from the plot, both variables significantly influenced the distribution of the meat products within the PCA space. Moreover, the two variables were not correlated, indicating that a higher nitrite content in a sample did not necessarily correspond to a lower sodium chloride content, and vice versa. Most meat products clustered closely around the origin of the PCA score plot (Figure 1b), suggesting a high degree of similarity in sodium and nitrite content across the majority of analyzed products. Only a limited number of meat products deviated significantly from this cluster, reflecting potential product-specific formulation practices or technological differences in processing.

The mean sodium chloride content across all analyzed meat products was 1.91 g/100 g. As shown in the PCA score plot (Figure 1b), samples of čajna kobasica (a dry fermented sausage) were positioned in the negative quadrant of the first principal component (F1), with their distribution strongly influenced by sodium chloride content. This group exhibited the highest mean sodium chloride concentration (3.67 g/100 g), with a particularly elevated level observed in the product produced by manufacturer no. 4. These results are consistent with previously reported data for traditional Serbian dry fermented sausages (*Ikonić et al.*, 2020), and exceed levels recorded by *Vranić et al.* (2009) for similar products on the domestic market. In contrast, liver sausages and pâtés exhibited the lowest sodium chloride levels, averaging 1.19 g/100 g. Notably, three meat

products from this group (PJ4, PJ11, and PJ18) had sodium chloride contents below 1.00 g/100 g and were located in the positive region of F1, showing a clear difference from the dry fermented sausages. Finely comminuted cooked sausages contained, on average, 2.10 g/100 g (chicken hot dogs) and 1.95 g/100 g (pork hot dogs) of sodium chloride, while canned meat products ranged from 1.35 g/100 g in pileća prsa to 1.41 g/100 g of sodium chloride in pizza šunka.

On average, 183.47 g of meat and meat products are consumed daily in Serbia. Among these, meat products are the third most commonly consumed group, after poultry and pork, contributing 38.06 g per day, whereas dried meat products rank fifth, with 12.9 g consumed daily. The mean sodium chloride content in the studied meat products was 1.91 g/100g, and in dried meat products, obtained by *Vranić et al.*, (2009), was 5.09 g/100g, which means that the average consumer in Serbia would intake 0.73 and 0.66 g of sodium chloride daily from meat products and dried meat products, respectively. In many countries, meat and meat products are the second largest contributors to dietary salt intake, after baked goods, and the meats contribute around 20% of the sodium intake (*Desmond*, 2006). From these data, it is clear that the average daily intake of sodium chloride from meat products and dried meat products, added together, is 1.39 g. Moreover, the mean sodium chloride content in meat products observed in this study (1.91 g/100 g) exceeds the WHO global sodium benchmarks for liver sausages (525 mg Na/100 g, equivalent to 1.33 g/100 g of salt), hot dogs (540 mg Na/100 g, equivalent to 1.37 g/100 g of salt), and cured meat (950 mg Na/100 g, equivalent to 2.41 g/100 g of salt), highlighting the need for effective sodium reduction strategies in Serbian meat products.


According to the PCA loading plot (Figure 1a), nitrite content—represented in the positive quadrant of F1—significantly contributed to the separation of five meat products (PPV10, PPV4, PP7, PPV2, and PS9), each exhibiting nitrite concentrations exceeding 19 mg/kg (ranging from 19.16 to 39.12 mg/kg). Group-wise means were as follows: 4.59 mg/kg for liver sausages and pâtés, 7.02 mg/kg for pork hot dogs, and 9.27 mg/kg and 9.41 mg/kg for chicken and pork canned meats, respectively.

Based on the mean nitrite content of 7.66 mg/kg for meat products and 10.7 mg/kg for dried meat products (*Bajčić et al.*, 2018), and using the same consumption figures as above (38.06 g and 12.9 g/day), the estimated nitrite intake is 0.29 mg/day from

meat products and 0.10 mg/day from dried meat products, resulting in total nitrite intake of 0.39 mg/day. The acceptable daily intakes (ADIs) for nitrite, as set by the former Scientific Committee for Food (SCF, 1997) and the Joint FAO/WHO Expert Committee on Food Additives (JECFA, 2002), are 0.06 and 0.07 mg/kg body weight/day, respectively (SCF, 1997; JECFA, 2002). For an adult weighing 65 kg, the maximum permitted daily intake ranges from 3.9 to 4.55 mg/day. The calculated intake of 0.39 mg/day is therefore well below the established safety thresholds. All measured nitrite levels in this study complied with the maximum levels permitted by European legislation (European Commission, 2011) and Serbian national regulations (Serbian Regulation, 2018). The results are also consistent with findings from the German market (Andréé *et al.*, 2010; Honikel, 2008), indicating that Serbian meat processors generally operate within legally acceptable limits of nitrite additives.

4. Conclusions

The results of this study demonstrate that both sodium chloride and nitrite contents significantly influenced the distribution of meat product samples within the PCA space. The mean sodium chloride and nitrite contents were 1.91 g/100 g and 7.66 mg/kg, respectively. Estimated daily intake of sodium chloride from meat and dried meat products in Serbia was 1.39 g, while nitrite intake was 0.39 mg. Although nitrite levels were well below the acceptable daily intake and within legislative limits, sodium chloride intake exceeded recommended levels. Given the high cardiovascular risk in Serbia, efforts to reduce salt intake should be prioritized. Future research should focus on the development and implementation of reformulation strategies, consumer education, and product innovation aimed at improving the nutritional profile of meat products without compromising food safety or quality.

Bajcic, A., Petronijevic, R., Katanic, N., Trbovic, D., Betic, N., Nikolic, A., Milojevic, L. (2018). Evaluation of the content and safety of nitrite utilisation in meat products in Serbia in the period 2016–2018. *Meat Technology*, 59(2), 102–109. <https://doi.org/10.18485/meattech.2018.59.2.4>.

Catterall, W. A. (2000). From ionic currents to molecular mechanisms. *Neuron*, 26(1), 13–25. [https://doi.org/10.1016/s0896-6273\(00\)81133-2](https://doi.org/10.1016/s0896-6273(00)81133-2).

Choi, S. Y., Chung, M. J., Lee, S. J., Shin, J. H., & Sung, N. J. (2007). N-nitrosamine inhibition by strawberry, garlic, kale, and the effects of nitrite-scavenging and N-nitrosamine formation by functional compounds in strawberry and garlic. *Food Control*, 18(5), 485–491. <https://doi.org/10.1016/j.foodcont.2005.12.006>.

Desmond, E. (2006). Reducing salt: A challenge for the meat industry. *Meat Science*, 74(1), 188–196. <https://doi.org/10.1016/j.meatsci.2006.04.014>.

European Food Safety Authority (EFSA) Panel on Nutrition, Novel Foods and Food Allergens (NDA), (2019). Scientific opinion on the dietary reference values for sodium. *EFSA Journal*, 17(9), 5778. <https://doi.org/10.2903/j.efsa.2019.5778>.

European Food Safety Authority (EFSA), (2010). Statement on nitrates in meat products. *EFSA Journal*, 8, 1538–1549. <https://doi.org/10.2903/j.efsa.2010.1538>.

European Commission. (2011). European Commission. Regulation (EC) No. 1129/2011 of the European Parliament and of the Council of 12 November 2011 amending Annex II to Regulation (EC) No. 1333/2008 by establishing a Union list of food additives. *Official Journal of the European Union*, L295, 1.

European Public Health Alliance, (2021). Mandatory limits on salt in certain food products. Retrieved from <https://epha.org/https-epha-org-wp-content-uploads-2021-12-11-21-mandatory-limits-on-salt-in-certain-food-products-1-e1638958069954>. Accessed September 8, 2025.

European Commission, (2025). Salt campaign. Retrieved from https://health.ec.europa.eu/other-pages/basic-page/salt-campaign_en. Accessed September 8, 2025.

Food Standards Agency (FSA), (2024). *Salt Targets 2024: Final Technical Report*. Available online: <https://www.food.gov.uk/research/salt-targets-2024-final-technical-report> (accessed on 23 July 2025).

Gilchrist, M., Winyard, P. G., & Benjamin, N. (2010). Dietary nitrate – Good or bad? *Nitric oxide: Biology and chemistry*, 22(2), 104–109. <https://doi.org/10.1016/j.niox.2009.10.005>.

Haddad, G. B. S., Moura, A. P. R., Fontes, P. R., Cunha, S. F. V., Ramos, A. L. S., & Ramos, E. M. (2018). The effects of sodium chloride and PSE meat on restructured cured-smoked pork loin quality: A response surface methodology study. *Meat Science*, 137, 191–200. <https://doi.org/10.1016/j.meatsci.2017.11.030>.

Honikel, K. O. (2008). The use and control of nitrate and nitrite for the processing of meat products. *Meat Science*, 78(1–2), 68–76. <https://doi.org/10.1016/j.meatsci.2007.05.030>.

Ikonić, P., Peulić, T., Jokanović, M., Šojić, B., Škaljac, S., Popović, S., Šarić, L., Novaković, A., Tomović, V., & Vasilev, D. (2020). Evaluation of the physicochemical, biochemical and microbiological characteristics of three Serbian traditional dry-fermented sausages. *Journal of Food Science and Technology*. <https://doi.org/10.1007/s13197-020-04825-4>.

International Organization for Standardization (ISO), (2000). ISO 6869:2000 – *Determination of the contents of calcium, copper, iron, magnesium, manganese, potassium, sodium and zinc – Method using atomic absorption spectrometry*; ISO: Geneva, Switzerland, 2000.

Inguglia, E. S., Zhang, Z., Tiwari, B. K., Kerry, J. P., & Burgess, C. M. (2017). Salt reduction strategies in processed meat products – A review. *Trends in Food Science & Technology*, 59, 70–78. <https://doi.org/10.1016/j.tifs.2016.10.016>.

International Organization for Standardization (ISO), (1975). ISO 2918:1975 – *Determination of nitrite content. Meat and meat products*; ISO: Geneva, Switzerland, 1975.

Joint FAO/WHO Expert Committee on Food Additives (JEC-FA), (2002). *Evaluation of certain food additives and contaminants: Fifty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives* (WHO Technical Report Series No. 913, pp. 20–32). World Health Organization.

Jentsch, T. J., Stein, V., Weinreich, F., & Zdebik, A. A. (2002). Molecular structure and physiological function of chloride channels. *Physiological Reviews*, 82(2), 503–568. <https://doi.org/10.1152/physrev.00029.2001>.

Norwegian Directorate of Health, (2016). Salt and the Salt Partnership. Retrieved from <https://www.helsedirektoratet.no/english/salt-and-the-salt-partnership>. Accessed September 8, 2025.

Matthews, K., & Strong, M. (2005). Salt – Its role in meat products and the industry's action plan to reduce it. *Nutrition Bulletin*, 30(1), 55–61. <https://doi.org/10.1111/j.1467-3010.2005.00469.x>.

Parthasarathy, D. K., & Bryan, N. S. (2012). Sodium nitrite: The “cure” for nitric oxide insufficiency. *Meat Science*, 92(3), 274–279. <https://doi.org/10.1016/j.meatsci.2012.03.001>.

Pretorius, B., & Schönfeldt, H. C. (2018). The contribution of processed pork meat products to total salt intake in the diet. *Food Chemistry*, 238, 139–145. <https://doi.org/10.1016/j.foodchem.2016.11.078>.

Rede, R. R., & Petrović, S. Lj. (1997). *Tehnologija mesa i nauka o mesu*, 1st ed.; Naučna knjiga: Beograd, Srbija, 1997.

Ruusunen, M., Puolanne, E. (2005). Reducing sodium intake from meat products. *Meat Science*, 70(3), 531–541. <https://doi.org/10.1016/j.meatsci.2004.07.016>.

Scientific Committee on Food (SCA), (1997). *Assessment of dietary intake of nitrates by the population in the European Union, as a consequence of the consumption of vegetables* (Reports on tasks for scientific cooperation: Report of experts participating in Task 3.2.3, p. 34). European Commission. Sebranek, J.G. Basic curing ingredients. In *Ingredients in Meat Products*; Tarté, R., Ed.; Springer: Boston, MA, USA, 2009; pp. 1–23.

Serbian Regulation, (2018). 53/2018 Pravilnik o prehrabeniim aditivima. *Službeni glasnik RS*, 53.

Serbian Regulation, (2023). Pravilnik o kvalitetu usitnjenog mesa, poluproizvoda od mesa i proizvoda od mesa. *Službeni glasnik RS*, broj 34; Rulebook on quality of minced meat, semi-finished meat products and meat products. *Official Gazette of the Republic of Serbia*, No 34.

Serbian Regulation, (2024). Pravilnik o deklarisanju, označavanju i reklamiranju hrane. *Službeni glasnik Republike Srbije*, broj 61; Rulebook on food declaration, labeling and advertising. *Official Gazette of the Republic of Serbia*, No 61.

Statistical Office of the Republic of Serbia, (2024). *Statistical Yearbook of the Republic of Serbia, 2024*; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2024. ISSN 0354-4206.

Statistical Office of the Republic of Serbia, (2024). *Bulletin – Household Budget Survey, 2023*; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2024. ISSN 0354-3641.

Vranić, D., Saičić, S., Lilić, S., Trbović, D., & Janković, S. (2009). Studija o sadržaju natrijum-hlorida i natrijuma u nekim proizvodima od mesa sa tržišta Srbije. *Tehnologija Mesa*, 50(3–4), 249–255.

World Health Organization (WHO), (2010). *Strategies to Monitor and Evaluate Population Sodium Consumption and Sources of Sodium in the Diet: Report of a Joint Technical Meeting Convened by WHO and the Government of Canada*; WHO: Geneva, Switzerland, 2010.

World Health Organization (WHO), (2012). *Guideline: Sodium Intake for Adults and Children*; WHO: Geneva, Switzerland, 2012.

World Health Organization (WHO), (2016). *Salt Reduction*; WHO: Geneva, Switzerland, 2016.

World Health Organization (WHO), (2023). *WHO Global Report on Sodium Intake Reduction*; WHO: Geneva, Switzerland, 2023. Available online: <https://www.who.int/publications/i/item/9789240069985> (accessed on 23 July 2025).

World Action on Salt, Sugar & Health, (2025). Bulgaria. Retrieved from <https://www.worldactiononsalt.com/worldaction/europe/bulgaria/>. Accessed September 8, 2025.

Wu, H., Zhuang, H., Zhang, Y., Tang, J., Yu, X., Long, M., Wang, J., & Zhang, J. (2015). Influence of partial replacement of NaCl with KCl on profiles of volatile compounds in dry-cured bacon during processing. *Food Chemistry*, 172, 391–399. <https://doi.org/10.1016/j.foodchem.2014.09.088>.

Zhang, H., Sun, C., Han, W., Zhang, J., & Hou, J. (2018). Analysis of the monitoring status of residual nitrite in meat products in China from 2000 to 2011. *Meat Science*, 136, 30–34. <https://doi.org/10.1016/j.meatsci.2017.10.009>.

Authors info

Milica Vidosavljević, <https://orcid.org/0000-0002-4872-8127>

Tatjana Peulić, <https://orcid.org/0000-0002-7074-4633>

Predrag Ikonić, <https://orcid.org/0000-0002-4882-8048>

Bojana Ikonić, <https://orcid.org/0000-0003-4053-9193>

Jovana Delić, <https://orcid.org/0000-0002-8764-4110>

Marija Jokanović, <https://orcid.org/0000-0002-1282-175X>

Jasmina Lazarević, <https://orcid.org/0000-0003-0538-3365>