

Incorporation of microalgae in the development of innovative dairy products

Tijana Ledina^{1*} , Marko Komloš¹ , Đorđe Pajičić¹ and Jasna Lončina¹

¹ University of Belgrade, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Bulevar oslobođenja 18, 11000 Belgrade, Serbia

ARTICLE INFO

Keywords:

Microalgae
Functional foods
Chlorella vulgaris
Arthrospira platensis
Dairy products

ABSTRACT

Global food demand is projected to rise in the future, increasing pressure on food systems and intensifying the search for sustainable protein sources. Microalgae are increasingly recognized as a promising alternative due to their high protein content, favourable essential amino acid profile, polyunsaturated fatty acids, vitamins, minerals, and diverse bioactive compounds with antioxidant potential. Dairy products, as widely consumed nutrient-rich foods, represent an ideal platform for microalgae incorporation to improve nutritional quality and promote more sustainable diets. The aim of this manuscript was to provide a concise overview of dairy product formulations incorporating microalgae, with an emphasis on future prospects and associated challenges. The most thoroughly studied algal species are *Arthrospira platensis* and *Chlorella vulgaris*, and the possibility of their incorporation into fermented milks, particularly yogurt, cheese and ice creams. Documented benefits include increased protein content, improved fatty acid composition, enhanced antioxidant activity, and potential stimulation of starter and probiotic bacterial growth. Nevertheless, technological and sensory challenges remain, including modifications in texture, viscosity, and colour, as well as the development of bitter, herbaceous, or marine-like flavours that may reduce consumer acceptance. Future research should focus on identifying suitable microalgal species, refining processing technologies, and developing flavour-masking approaches to enable the production of microalgae-enriched dairy products that are both nutritionally enhanced and sensorially acceptable to a broad consumer base.

1. Introduction

Global food demand is projected to rise by 35–56% by 2050, and potentially by up to 62% when the impacts of climate change are considered (Van Dijk *et al.*, 2021). The projected increase in the intake of animal-derived protein poses particular challenges for both food security and environmental sustainability. Consequently, the development and adoption of alternative protein sources for direct

human consumption will be essential (Henchion *et al.*, 2017).

Microalgae are regarded as one of the most promising alternative protein sources for future. The term microalgae are not based on phylogenetic classification, but it refers to a heterogenous group of unicellular photosynthetic microorganisms, both eukaryotic and prokaryotic (Barros de Medeiros *et al.*, 2022). Microalgae are a sustainable alternative protein source and are also characterized by high

*Corresponding author: Tijana Ledina, tijanaledina@gmail.com

Paper received August 23rd 2025. Paper accepted September 15th 2025.

The paper was presented at the 63rd International Meat Industry Conference “Food for Thought: Innovations in Food and Nutrition” – Zlatibor, October 05th-08th 2025.

Published by Institute of Meat Hygiene and Technology – Belgrade, Serbia.

This is an open access article CC BY licence (<http://creativecommons.org/licenses/by/4.0/>)

contents of essential fatty acids and vitamins. Furthermore, due to their abundance of bioactive compounds, they are increasingly recognized as valuable ingredients in the formulation of functional foods (Hernández et al., 2022).

Dairy products are widely consumed across the globe and are an important source of essential nutrients. The incorporation of microalgae into dairy matrices has been proposed as a strategy to enhance their nutritional profile by providing additional proteins, essential fatty acids, vitamins, and antioxidants, thereby contributing to the development of more sustainable and health-promoting products (Hernández et al., 2022).

The aim of this manuscript is to provide a concise overview of dairy product formulations incorporating microalgae, with an emphasis on future prospects and associated challenges.

2. Microalgae composition

According to *AlgaeBase*, the leading global database of algal taxonomy, approximately 50,000 microalgal species have been described to date (*algaebase.org*). Nevertheless, only a limited number of these species are used in food production, with *Arthrospira (Spirulina) platensis* and *Chlorella vulgaris* being the predominant species applied in the dairy industry (Hernández et al., 2022).

Microalgae are a rich source of protein, which can be as high as 70% of dry biomass (Lucakova et al., 2022). The protein content of *Arthrospira platensis* is in the range 55-70% per dry matter and 42-55% in *Chlorella vulgaris* (Barros de Medeiros et al., 2022). Both species produce high-quality proteins containing all essential amino acids (Lucakova et al., 2022). Although they are deficient in sulphur-containing amino-acids, the amino acid profiles of these microalgae are comparable to the conventional protein sources, egg and soybean (Becker, 2007). The main obstacle for using microalgae as a protein source is the presence of a cellulosic cell wall, which is indigestible in the human gastrointestinal tract (Fasolin et al., 2019). This limitation can be addressed through various cell disruption techniques, including enzymatic hydrolysis, microwave treatment, pulsed electric fields, high-pressure processing, ultrasonication, osmotic shock, and chemical methods (Barros de Medeiros et al., 2022).

The lipid content in microalgae is usually in the range 20-50% per dry matter biomass, and is influenced by the metabolic status of the cells and culti-

vation conditions (Barros de Medeiros et al., 2022). Microalgae are a source of polyunsaturated fatty acids (PUFAs) ω -3 and ω -6 fatty acids, and sterols (Randhir et al., 2020). *C. vulgaris* is a source of α -linolenic acid (ALA, C18:3 n-3) and linoleic acid (LA, C18:2 n-6) (Hernández et al., 2022), whereas *A. platensis* is particularly rich in ω -6 fatty acids, with γ -linolenic acid (GLA, C18:3 n-6) being predominant (Senila et al., 2025). Other microalgal species, including *Nannochloropsis gaditana*, *Nannochloropsis oculata*, *Pavlova lutheri*, *Phaeodactylum tricornutum*, and *Tetradesmus pseudonana*, are valuable sources of eicosapentaenoic acid (EPA, C20:5 n-3), while *Pavlova lutheri* is recognized for its high content of docosahexaenoic acid (DHA, C22:6 n-3) (Lucakova et al., 2022). PUFAs produced by microalgae are of special interest, since they contain lower levels of contaminants (dioxins, polychlorinated biphenyls, methyl mercury) compared to fish oils (Barros de Medeiros et al., 2022).

Carbohydrates, which make up to 20% of the dry biomass, are usually accumulated in microalgae in the form of starch or other polysaccharides, such as glycogen, β -glucan etc, depending on the species. Exopolysaccharides are of special interest due to their beneficial health effects, such as antioxidant capacity and antitumor effects (Barros de Medeiros et al., 2022; Lucakova et al., 2022). Moreover, some of the carbohydrates produced by microalgae can serve as prebiotics (Eltanahy et al., 2021).

3. Microalgae in dairy products

Microalgae can be incorporated into dairy products, especially fermented milk, ice creams and cheeses in order to increase protein content and deliver bioactive compounds (Behesthipour et al., 2013). The incorporation into fermented dairy products can be done either before fermentation, directly into the milk or after fermentation into the finished product (Hernández et al., 2022). The approach where microalgae are added before fermentation process is preferred, since their interaction with lactic acid bacteria has a pivotal role in the product quality (Albuquerque et al., 2024). Yogurt was the most extensively studied fermented dairy product, in which microalgae incorporation has been shown to improve the nutritional profile, particularly by increasing the protein content (Luwidharto et al., 2025). *A. platensis* was most frequently used in the studies, typically at concentrations not exceeding 1% (Barkallah et al., 2017; Bchir et al., 2019;

Silva *et al.*, 2019; Atallah *et al.*, 2020; Khaledabad *et al.*, 2020).

The addition of microalgae to yogurt can affect its functional and technological properties. Bioactive peptides formed during fermentation, together with carotenoids, chlorophylls, phycocyanin, and other pigments, as well as phenolic compounds originating from microalgae, contribute to enhanced antioxidant activity (Albuquerque *et al.*, 2024). Multiple studies (Barkallah *et al.*, 2017; Atallah *et al.*, 2020; Khaledabad *et al.*, 2020; Mesbah *et al.*, 2022; Nazir *et al.*, 2022) have reported a significant increase in antioxidant capacity when *A. platensis* is added to yogurt. However, antioxidants can change stability during processing and refrigerated storage, highlighting the need for optimized formulation strategies to preserve antioxidant potential throughout the product's shelf life (Albuquerque *et al.*, 2024). The addition of microalgae to fermented dairy products can promote the growth and survival of starter cultures and probiotic bacteria, owing to the bioavailability of trace elements, vitamins, and growth-promoting bioactive compounds (Caporgno and Mathys, 2018). Studies by de Mocanu *et al.* (2013), Khaledabad *et al.* (2020), and Luwidharto *et al.* (2022) demonstrated that *A. platensis* addition leads to higher viable counts of lactic acid bacteria in fermented dairy products, potentially enhancing their functional properties.

However, the development of yogurt-based product with microalgae comes with the challenges, especially regarding textural and sensory properties. Interactions between lipids from microalgae and milk can affect emulsion creation and the structure of yogurt with regard to the texture and stability of the final products (Albuquerque *et al.*, 2024). Interactions between proteins from microalgae and milk proteins should be also taken into consideration, since they can form protein complexes which affect yogurt viscosity. Microalgal fortification enhanced the viscosity of yogurt, which is attributed to protein and exopolysaccharide contents (Bchir *et al.*, 2019; Luwidharto *et al.*, 2022). However, the incorporation of microalgae into yogurt affects not only its nutritional value but also key sensory attributes, particularly flavour and colour, which strongly influence consumer acceptance. Unique aroma and taste notes could challenge acceptance in markets with a preference for traditional flavours (Zarrin *et al.*, 2014; Silva and Pandolfi, 2020). As such, the impact that microalgae can have on sensory proper-

ties can pose both as an opportunity for innovation and obstacle to broader market appeal.

Cheese is a highly versatile category of dairy product, encompassing a wide variety of types that differ in technological processes, sensory characteristics, physicochemical properties, etc. Most studies exploring the incorporation of microalgae have focused on soft white-brined cheeses, quark, and cheese spreads (Garofalo *et al.*, 2022). The microalgal species most commonly investigated for incorporation into cheese are *A. platensis* and *C. vulgaris*. Regarding cheese analogue composition, the addition of algae has the most profound impact on protein and fat content (Agustini *et al.*, 2016; Darwish, 2017; Golkmani *et al.*, 2019; Bosnea *et al.*, 2020). The antioxidant activity was also improved also by the addition of microalgae to cheese, mainly due to the higher levels of phenolic compounds, flavonoids, β-carotene, etc. (Darwish, 2017; Ismail *et al.*, 2023; Lousada Falcão *et al.*, 2023).

The addition of microalgae had effects on the starter culture and probiotic growth in cheese. Studies by Mazinani *et al.* (2016) and Golkmani *et al.* (2019) demonstrated that the inclusion of *A. platensis* can enhance bacterial growth and viability, even during prolonged storage. Microalgae addition can also markedly influence cheese texture, one of its most critical quality attributes. This effect is often linked to the water-binding capacity of microalgal proteins and exopolysaccharides (Luwidharto *et al.*, 2025). Reported textural changes differ by cheese type. Golkmani *et al.* (2019) observed reduced hardness in Feta-type cheese, whereas Darwish (2017) found increased hardness, cohesiveness, gumminess, and chewiness in Karaish cheese. In the study by Falcão *et al.* (2023), cream cheese and quark with added *C. vulgaris* showed decreased firmness and softer texture than the control. Regarding the sensory attributes, a bitter taste is one of the biggest challenges to overcome when microalgae are added (Golkmani *et al.*, 2019; Bosnea *et al.*, 2020). It was reported that the bitter taste was more pronounced with the increasing level of microalgae and increased storage time (Golkmani *et al.*, 2019).

Ice cream is a complex dairy product composed of milk, sweeteners, stabilizers, emulsifiers, flavours, and colourants (Durmaz *et al.*, 2020). Microalgae, rich in natural pigments and bioactive compounds, present a promising alternative to food colourants, which are perceived as “unhealthy”, and certain stabilizing agents in ice cream formulations (Hernández

et al., 2022). Among various microalgae species, *A. platensis* has been the most extensively studied for ice cream fortification (Malik et al., 2012; Agustini et al., 2016; Balensiefer et al., 2021). Fortified products have demonstrated compositional changes, including increased protein and fat content. Fortified ice creams also showed changes in other important parameters, such as prolonged melting time, and higher overrun due to enhanced air incorporation (Malik et al., 2012; Agustini et al., 2016). Rheological properties were also influenced; for instance, a reduction in viscosity was observed (Agustini et al., 2016), attributed to the lower water absorption capacity of *A. platensis* compared to conventional stabilizers (Robertson, 2014). The addition of microalgae had impact also on sensory properties, since excessive supplementation intensified bitterness (Durmaz et al., 2020).

4. Conclusion

The incorporation of microalgae into dairy products can significantly enhance their nutrition-

al and functional properties, most notably through increased protein content, enrichment with essential fatty acids, vitamins, minerals, and a boost in antioxidant capacity. Additionally, microalgae contribute bioactive compounds, such as phycocyanin and carotenoids, which could offer health-promoting effects. However, their application also introduces technological and sensory challenges. Fortification often alters rheological characteristics and product stability, while sensory attributes can be negatively affected with the development of increased bitterness, herbaceous and marine-like aromas, which can limit consumer acceptance. These drawbacks can be mitigated through careful selection of microalgal species, optimization of cultivation and processing conditions, and adjustment of inclusion levels to balance functionality with sensory appeal. Future research should focus on species screening, microalgae pre-treatment (e.g., cell disruption, deodorization), and integration with flavour-masking strategies to develop dairy products that are both functionally enhanced and organoleptically acceptable to a broad consumer base.

Disclosure Statement: No potential conflict of interest was reported by the authors.

Funding: This work was supported by the Ministry of Science, Technological Development and Innovation (Contract number 451-03-136/2025-03/200143)

References

Agustini, T. W., Ma'ruf, W. F., Widayat, A., Suzery, M., Hadiyanto, L., & Benjakul, S. (2016). Application of *Spirulina platensis* on ice cream and soft cheese with respect to their nutritional and sensory perspectives. *Jurnal Teknologi*, 78, 245–251. <https://doi.org/10.11113/jt.v78.8216>

Albuquerque, R. C. V., Silva, C. E. de F., Carneiro, W. de S., Andreola, K., da Gama, B. M. V., & Silva, A. E. de. (2024). Incorporation of cyanobacteria and microalgae in yogurt: Formulation challenges and nutritional, rheological, sensory, and functional implications. *Applied Microbiology*, 4(4), 1493–1514. <https://doi.org/10.3390/applmicrobiol4040103>

Algabase.org, Accessed Aug 5 2025

Atallah, A., Morsy, O., & Dalia, G. (2020). Characterization of functional low-fat yogurt enriched with whey protein concentrate, Ca-caseinate and *Spirulina*. *International Journal of Food Properties*, 23, 78–91. <https://doi.org/10.1080/10942912.2020.1823409>

Balensiefer, C., Tiepo, V., Gottardo, F. M., Bertol, C. D., Reinehr, C. O., & Colla, L. M. (2021). Addition of *Spirulina platensis* in handmade ice cream: Physicochemical and sensory effects. *Brazilian Journal of Development*, 7, 88106–88123. <https://doi.org/10.34117/bjdv7n9-121>

Barkallah, M., Dammak, M., Louati, I., Bentati, F., Hadrich, B., & Mechichi, T. (2017). Effect of *Spirulina platensis* fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. *LWT*, 84, 323–330. <https://doi.org/10.1016/j.lwt.2017.05.071>

Barros de Medeiros, V. P., da Costa, W. K. A., da Silva, R. T., Pimentel, T. C., & Magnani, M. (2022). Microalgae as source of functional ingredients in new-generation foods: Challenges, technological effects, biological activity, and regulatory issues. *Critical Reviews in Food Science and Nutrition*, 62(18), 4929–4950. <https://doi.org/10.1080/1048398.2021.1879729>

Bchir, B., Felfoul, I., Bouaziz, M. A., Gharred, T., Yaich, H., & Noumi, E. (2019). Investigation of physicochemical, nutritional, textural, and sensory properties of yoghurt fortified with fresh and dried *Spirulina* (*Arthrospira platensis*). *International Food Research Journal*, 26, 65–76.

Becker, E. W. (2007). Micro-algae as a source of protein. *BioTechnology Advances*, 25(2), 207–210. <https://doi.org/10.1016/j.biotechadv.2006.11.002>

Beheshtipour, H., Mortazavian, A. M., Mohammadi, R., Sohrabvandi, S., & Khosravi-Darani, K. (2013). Supplementation of *Spirulina platensis* and *Chlorella vulgaris*

algae into probiotic fermented milks. *Comprehensive Reviews in Food Science and Food Safety*, 12(2), 144–154. <https://doi.org/10.1111/1541-4337.12004>

Bosnea, L., Terpou, A., Pappa, E., Kondyli, E., Mataragas, M., & Markou, G. (2020). Incorporation of *Spirulina platensis* on traditional Greek soft cheese with respect to its nutritional and sensory perspectives. *Proceedings*, 70, 99. https://doi.org/10.3390/foods_2020-07600

Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. *Frontiers in Nutrition*, 5, 58. <https://doi.org/10.3389/fnut.2018.00058>

Darwish, A. M. I. (2017). Physicochemical properties, bioactive compounds and antioxidant activity of Kareish cheese fortified with *Spirulina platensis*. *World Journal of Dairy & Food Sciences*, 12, 71–78. <https://doi.org/10.5829/idosi.wjdfs.2017.71.78>

Durmaz, Y., Kılıçlı, M., Toker, O. S., Konar, N., Palabiyik, I., & Tamturk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. *Algal Research*, 47, 101811. <https://doi.org/10.1016/j.algal.2020.101811>

Eltanahy, E., & Torky, A. (2021). Microalgae as cell factories: Food and feed-grade high-value metabolites. In *Microalgal Biotechnology: Recent Advances, Market Potential, and Sustainability* (pp. 1–35). Royal Society of Chemistry.

Falcão, R. L., Pinheiro, V., Ribeiro, C., Sousa, I., Raymundo, A., & Nunes, M. C. (2023). Nutritional improvement of fresh cheese with microalga *Chlorella vulgaris*: Impact on composition, structure and sensory acceptance. *Food Technology and Biotechnology*, 61(2), 259–270. <https://doi.org/10.17113/ftb.61.02.23.7851>

Fasolin, L. H., Pereira, R. N., Pinheiro, A. C., Martins, J. T., Andrade, C. C. P., Ramos, O. L., & Vicente, A. A. (2019). Emergent food proteins—Towards sustainability, health and innovation. *Food Research International*, 125, 108586. <https://doi.org/10.1016/j.foodres.2019.108586>

Garofalo, C., Norici, A., Mollo, L., Osimani, A., & Aquilanti, L. (2022). Fermentation of microalgal biomass for innovative food production. *Microorganisms*, 10(10), 2069. <https://doi.org/10.3390/microorganisms10102069>

Golmakan, M. T., Soleimanian-Zad, S., Alavi, N., Nazari, E., & Eskandari, M. H. (2019). Effect of *Spirulina (Arthrospira platensis)* powder on probiotic bacteriologically acidified feta-type cheese. *Journal of Applied Phycology*, 31, 1085–1094. <https://doi.org/10.1007/s10811-018-1611-2>

Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. *Foods*, 6(7), 53. <https://doi.org/10.3390/foods6070053>

Hernández, H., Nunes, M. C., Prista, C., & Raymundo, A. (2022). Innovative and healthier dairy products through the addition of microalgae: A review. *Foods*, 11(5), 755. <https://doi.org/10.3390/foods11050755>

Ismail, H. A., El-Sawah, T. H., Ayyash, M., Adhikari, B., & Elkot, W. F. (2023). Functionalization of ricotta cheese with powder of *Spirulina platensis*: Physicochemical, sensory, and microbiological properties. *International Journal of Food Properties*, 26(1), 1968–1983. <https://doi.org/10.1080/10942912.2023.2238916>

Khaledabad, M., Ghasempour, Z., Kia, E. M., Bari, M. R., & Zarrin, R. (2020). Probiotic yoghurt functionalised with microalgae and Zedo gum: Chemical, microbiological, rheological and sensory characteristics. *International Journal of Dairy Technology*, 73, 67–75. <https://doi.org/10.1111/1471-0307.12625>

Lucakova, S., Branyikova, I., & Hayes, M. (2022). Microalgal proteins and bioactives for food, feed, and other applications. *Applied Sciences*, 12(9), 4402. <https://doi.org/10.3390/app12094402>

Lousada Falcão, R., Pinheiro, V., Ribeiro, C., Sousa, I., Raymundo, A., & Nunes, M. C. (2023). Nutritional improvement of fresh cheese with microalga *Chlorella vulgaris*: Impact on composition, structure and sensory acceptance. *Food Technology and Biotechnology*, 61(2), 259–270. <https://doi.org/10.17113/ftb.61.02.23.7851>

Luwidharto, J. C. N., Kurniaditya, V. H., Rizkaprilisa, W., & Bumi, S. A. P. (2025). Potential for microalgae as a superfood in fermented dairy products: A review. *Food Science and Technology Journal (Foodscitech)*, 127–140. <https://doi.org/10.25139/fst.vi.9228>

Luwidharto, J. C. N., Rahayu, E. S., Suroto, D. A., Wikandari, R., Ulfah, A., & Utami, T. (2022). Effects of *Spirulina platensis* addition on growth of *Lactobacillus plantarum* Dad 13 and *Streptococcus thermophilus* Dad 11 in fermented milk and physicochemical characteristics of the product. *Applied Food Biotechnology*, 9(3), 205–216. <https://doi.org/10.22037/afb.v9i3.37013>

Malik, P., Kempenna, C., & Paul, A. (2012). Quality characteristics of ice cream enriched with *Spirulina* powder. *International Journal of Food and Nutritional Sciences*, 2, 44–50.

Mazinani, S., Fadaei, V., & Khosravi-Darani, K. (2016). Impact of *Spirulina platensis* on physicochemical properties and viability of *Lactobacillus acidophilus* of probiotic UF feta cheese: Microalgal incorporation probiotic UF feta cheese. *Journal of Food Processing and Preservation*, 40, 1318–1324. <https://doi.org/10.1111/jfpp.12717>

Mesbah, E., Matar, A., & Karam-Allah, A. (2022). Functional properties of yoghurt fortified with *Spirulina platensis* and milk protein concentrate. *Journal of Food and Dairy Sciences*, 13, 1–7. <https://doi.org/10.21608/jfds.2022.114135.1032>

Mocanu, G. D., Botez, E., Nistor, O. V., Georgeta, D., & Vlăscănu, G. (2013). Influence of *Spirulina platensis* biomass over some starter culture of lactic bacteria. *Journal of Agroalimentary Processes and Technologies*, 19, 474–479.

Nazir, F., Saeed, M. A., Abbas, A., Majeed, M. R., Israr, M., Zahid, H., Ilyas, M., & Nasir, M. (2022). Development, quality assessment and nutritive valorization of *Spirulina platensis* in yogurt spread. *Applied Food Biotechnology*, 5, 106–118. <https://doi.org/10.30721/fsab2022.v5.i2.173>

Randhir, A., Laird, D. W., Maker, G., Trengove, R., & Moheimani, N. R. (2020). Microalgae: A potential sustainable commercial source of sterols. *Algal Research*, 46, 101772. <https://doi.org/10.1016/j.algal.2019.101772>

Robinson, R. K. (2014). *Encyclopedia of Food Microbiology* (2nd ed., p. 3248). Academic Press.

Senila, L., Kovacs, E., & Roman, C. (2025). Chemical characterization, lipid profile, and volatile compounds in *Chlorella* sp. and *Spirulina platensis*: A promising feedstock for various applications. *Molecules*, 30(7), 1499. <https://doi.org/10.3390/molecules30071499>

Silva, I. S. C., & Pandolfi, M. A. C. (2020). Análise das principais tendências no mercado brasileiro de iogurtes. *Revista Interface Tecnologia*, 17, 523–534. <https://doi.org/10.31510/infra.v17i2.899>

Silva, S. C., Fernandes, I. P., Barros, L., Fernandes, Â., Alves, J. M., & Calhelha, R. C. (2019). Spray-dried *Spirulina platensis* as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. *Journal of Functional Foods*, 60, 103427. <https://doi.org/10.1016/j.jff.2019.103427>

van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. *Nature Food*, 2(7), 494–501. <https://doi.org/10.1038/s43016-021-00322-9>

Zarrin, R., Ghasempour, Z., Rezazad Bari, M., Alizadeh, M., & Moghaddas, K. E. (2014). Investigating the effects of microalgae *Spirulina platensis* and Zedo gum on probiotic yogurt. *Research, Innovation and Food Science & Technology*, 3, 197–210. <https://doi.org/10.22101/JRIFST.2014.10.23.331>

Authors info

Tijana Ledina, <https://orcid.org/0000-0002-9903-1477>

Marko Komloš, <https://orcid.org/0000-0002-8578-0530>

Dorđe Pajičić, <https://orcid.org/0009-0004-0777-3572>

Jasna Lončina, <https://orcid.org/0000-0001-5198-5549>